• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 20,468
Next 10 →

Robust principal component analysis?

by Emmanuel J Candès , Xiaodong Li , Yi Ma , John Wright - Journal of the ACM, , 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the ..."
Abstract - Cited by 569 (26 self) - Add to MetaCart
Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low

Recognition-by-components: A theory of human image understanding

by Irving Biederman - Psychological Review , 1987
"... The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory, recog ..."
Abstract - Cited by 1272 (23 self) - Add to MetaCart
The perceptual recognition of objects is conceptualized to be a process in which the image of the input is segmented at regions of deep concavity into an arrangement of simple geometric components, such as blocks, cylinders, wedges, and cones. The fundamental assumption of the proposed theory

Nonlinear component analysis as a kernel eigenvalue problem

by Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller - , 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract - Cited by 1573 (83 self) - Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all

Using Discriminant Eigenfeatures for Image Retrieval

by Daniel L. Swets, John Weng , 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class retrieval ..."
Abstract - Cited by 508 (15 self) - Add to MetaCart
This paper describes the automatic selection of features from an image training set using the theories of multi-dimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for view-based class

PCA-SIFT: A more distinctive representation for local image descriptors

by Yan Ke, Rahul Sukthankar , 2004
"... Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deforma ..."
Abstract - Cited by 591 (6 self) - Add to MetaCart
Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image

EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis

by Arnaud Delorme, Scott Makeig - J. Neurosci. Methods
"... Abstract: We have developed a toolbox and graphic user interface, EEGLAB, running under the cross-platform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event i ..."
Abstract - Cited by 886 (45 self) - Add to MetaCart
information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and time/frequency decompositions including channel

Shape and motion from image streams under orthography: a factorization method

by Carlo Tomasi, Takeo Kanade - INTERNATIONAL JOURNAL OF COMPUTER VISION , 1992
"... Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orth ..."
Abstract - Cited by 1094 (38 self) - Add to MetaCart
Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under

Determining Optical Flow

by Berthold K. P. Horn, Brian G. Schunck - ARTIFICIAL INTELLIGENCE , 1981
"... Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent veloc ..."
Abstract - Cited by 2404 (9 self) - Add to MetaCart
Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent

Face description with local binary patterns: Application to face recognition

by Abdenour Hadid, Senior Member - IEEE Trans. Pattern Analysis and Machine Intelligence , 2006
"... Abstract—This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a ..."
Abstract - Cited by 526 (27 self) - Add to MetaCart
face descriptor. The performance of the proposed method is assessed in the face recognition problem under different challenges. Other applications and several extensions are also discussed. Index Terms—Facial image representation, local binary pattern, component-based face recognition, texture features

Secure spread spectrum watermarking for multimedia

by Ingemar J. Cox, Joe Kilian, F. Thomson Leighton, Talal Shamoon - IEEE TRANSACTIONS ON IMAGE PROCESSING , 1997
"... This paper presents a secure (tamper-resistant) algorithm for watermarking images, and a methodology for digital watermarking that may be generalized to audio, video, and multimedia data. We advocate that a watermark should be constructed as an independent and identically distributed (i.i.d.) Gauss ..."
Abstract - Cited by 1100 (10 self) - Add to MetaCart
This paper presents a secure (tamper-resistant) algorithm for watermarking images, and a methodology for digital watermarking that may be generalized to audio, video, and multimedia data. We advocate that a watermark should be constructed as an independent and identically distributed (i
Next 10 →
Results 1 - 10 of 20,468
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University