Results 1  10
of
320,221
A threat in the air: How stereotypes shape intellectual identity and performance
 American Psychologist
, 1997
"... A general theory of domain identification is used to describe achievement barriers still faced by women in advanced quantitative areas and by African Americans in school. The theory assumes that sustained school success requires identification with school and its subdomains; that societal pressures ..."
Abstract

Cited by 639 (10 self)
 Add to MetaCart
A general theory of domain identification is used to describe achievement barriers still faced by women in advanced quantitative areas and by African Americans in school. The theory assumes that sustained school success requires identification with school and its subdomains; that societal pressures on these groups (e.g., economic disadvantage, gender roles) can frustrate this identification; and that in school domains where these groups are negatively stereotyped, those who have become domain identified face the further barrier of stereotype threat, the threat that others ' judgments or their own actions will negatively stereotype them in the domain. Research shows that this threat dramatically depresses the standardized test performance of women and African Americans who are in the academic vanguard of their groups
Axiomatic quantum field theory in curved spacetime
, 2008
"... The usual formulations of quantum field theory in Minkowski spacetime make crucial use of features—such as Poincare invariance and the existence of a preferred vacuum state—that are very special to Minkowski spacetime. In order to generalize the formulation of quantum field theory to arbitrary globa ..."
Abstract

Cited by 692 (18 self)
 Add to MetaCart
and covariantly constructed from the spacetime metric), a microlocal spectrum condition, an "associativity" condition, and the requirement that the coefficient of the identity in the OPE of the product of a field with its adjoint have positive scaling degree. We prove curved spacetime versions
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 782 (22 self)
 Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter
Nonparametric estimation of average treatment effects under exogeneity: a review
 REVIEW OF ECONOMICS AND STATISTICS
, 2004
"... Recently there has been a surge in econometric work focusing on estimating average treatment effects under various sets of assumptions. One strand of this literature has developed methods for estimating average treatment effects for a binary treatment under assumptions variously described as exogen ..."
Abstract

Cited by 597 (26 self)
 Add to MetaCart
as exogeneity, unconfoundedness, or selection on observables. The implication of these assumptions is that systematic (for example, average or distributional) differences in outcomes between treated and control units with the same values for the covariates are attributable to the treatment. Recent analysis has
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope
How much should we trust differencesindifferences estimates? Quarterly Journal of Economics 119:249–75
, 2004
"... Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data on fema ..."
Abstract

Cited by 775 (1 self)
 Add to MetaCart
into account the autocorrelation of the data) works well when the number of states is large enough. Two corrections based on asymptotic approximation of the variancecovariance matrix work well for moderate numbers of states and one correction that collapses the time series information into a “pre ” and “post
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Multipoint quantitativetrait linkage analysis in general pedigrees
 Am. J. Hum. Genet
, 1998
"... Multipoint linkage analysis of quantitativetrait loci (QTLs) has previously been restricted to sibships and small pedigrees. In this article, we show how variancecomponent linkage methods can be used in pedigrees of arbitrary size and complexity, and we develop a general framework for multipoint i ..."
Abstract

Cited by 549 (56 self)
 Add to MetaCart
identitybydescent (IBD) probability calculations. We extend the sibpair multipoint mapping approach of Fulker et al. to general relative pairs. This multipoint IBD method uses the proportion of alleles shared identical by descent at genotyped loci to estimate IBD sharing at arbitrary points along a
Quantile Regression
 JOURNAL OF ECONOMIC PERSPECTIVES—VOLUME 15, NUMBER 4—FALL 2001—PAGES 143–156
, 2001
"... We say that a student scores at the fifth quantile of a standardized exam if he performs better than the proportion � of the reference group of students and worse than the proportion (1–�). Thus, half of students perform better than the median student and half perform worse. Similarly, the quartiles ..."
Abstract

Cited by 937 (10 self)
 Add to MetaCart
as introduced by Koenker and Bassett (1978) seeks to extend these ideas to the estimation of conditional quantile functions—models in which quantiles of the conditional distribution of the response variable are expressed as functions of observed covariates. In Figure 1, we illustrate one approach to this task
By Force of Habit: A ConsumptionBased Explanation of Aggregate Stock Market Behavior
, 1999
"... We present a consumptionbased model that explains a wide variety of dynamic asset pricing phenomena, including the procyclical variation of stock prices, the longhorizon predictability of excess stock returns, and the countercyclical variation of stock market volatility. The model captures much of ..."
Abstract

Cited by 1427 (68 self)
 Add to MetaCart
with consumption. The model is driven by an independently and identically distributed consumption growth process and adds a slowmoving external habit to the standard power utility function. These features generate slow countercyclical variation in risk premia. The model posits a fundamentally novel description
Results 1  10
of
320,221