• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 82,390
Next 10 →

Reinforcement Learning for Planning in High-Dimensional Domains

by Dominik Notz , 2013
"... In this bachelor thesis we address the topic of reinforcement learning for planning in high-dimensional domains. A high-dimensional state space problem, which is modeled as a Markov Decision Process, cannot be solved with classical techniques such as policy or value iteration any more. Reason for t ..."
Abstract - Add to MetaCart
In this bachelor thesis we address the topic of reinforcement learning for planning in high-dimensional domains. A high-dimensional state space problem, which is modeled as a Markov Decision Process, cannot be solved with classical techniques such as policy or value iteration any more. Reason

The X-tree: An index structure for high-dimensional data

by Stefan Berchtold, Daniel A. Keim, Hans-peter Kriegel - In Proceedings of the Int’l Conference on Very Large Data Bases , 1996
"... In this paper, we propose a new method for index-ing large amounts of point and spatial data in high-dimensional space. An analysis shows that index structures such as the R*-tree are not adequate for indexing high-dimensional data sets. The major problem of R-tree-based index structures is the over ..."
Abstract - Cited by 592 (17 self) - Add to MetaCart
In this paper, we propose a new method for index-ing large amounts of point and spatial data in high-dimensional space. An analysis shows that index structures such as the R*-tree are not adequate for indexing high-dimensional data sets. The major problem of R-tree-based index structures

Automatic Subspace Clustering of High Dimensional Data

by Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan - Data Mining and Knowledge Discovery , 2005
"... Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity to the or ..."
Abstract - Cited by 724 (12 self) - Add to MetaCart
Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the results, non-presumption of any canonical data distribution, and insensitivity

High dimensional graphs and variable selection with the Lasso

by Nicolai Meinshausen, Peter Bühlmann - ANNALS OF STATISTICS , 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract - Cited by 736 (22 self) - Add to MetaCart
is a computationally attractive alternative to standard covariance selection for sparse high-dimensional graphs. Neighborhood selection estimates the conditional independence restrictions separately for each node in the graph and is hence equivalent to variable selection for Gaussian linear models. We

Estimating the Support of a High-Dimensional Distribution

by Bernhard Schölkopf, John C. Platt, John Shawe-taylor, Alex J. Smola, Robert C. Williamson , 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract - Cited by 783 (29 self) - Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length of the weight vector in an associated feature space. The expansion coefficients are found by solving a quadratic programming problem, which we do by carrying out sequential optimization over pairs of input patterns. We also provide a preliminary theoretical analysis of the statistical performance of our algorithm. The algorithm is a natural extension of the support vector algorithm to the case of unlabelled d...

Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces

by Lydia Kavraki, Petr Svestka, Jean-claude Latombe, Mark Overmars - IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION , 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collision-free configurations and whose edg ..."
Abstract - Cited by 1277 (120 self) - Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collision-free configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (=150 MIPS), after learning for relatively short periods of time (a few dozen seconds)

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

by Mikhail Belkin, Partha Niyogi , 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low-dimensional manifold embedded in a high-dimensional space. Drawing on the correspondenc ..."
Abstract - Cited by 1226 (15 self) - Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low-dimensional manifold embedded in a high-dimensional space. Drawing

GOLOG: A Logic Programming Language for Dynamic Domains

by Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, Richard B. Scherl , 1994
"... This paper proposes a new logic programming language called GOLOG whose interpreter automatically maintains an explicit representation of the dynamic world being modeled, on the basis of user supplied axioms about the preconditions and effects of actions and the initial state of the world. This allo ..."
Abstract - Cited by 628 (74 self) - Add to MetaCart
for applications in high level control of robots and industrial processes, intelligent software agents, discrete event simulation, etc. It is based on a formal theory of action specified in an extended version of the situation calculus. A prototype implementation in Prolog has been developed.

Three-dimensional object recognition from single two-dimensional images

by David G. Lowe - Artificial Intelligence , 1987
"... A computer vision system has been implemented that can recognize threedimensional objects from unknown viewpoints in single gray-scale images. Unlike most other approaches, the recognition is accomplished without any attempt to reconstruct depth information bottom-up from the visual input. Instead, ..."
Abstract - Cited by 484 (7 self) - Add to MetaCart
, three other mechanisms are used that can bridge the gap between the two-dimensional image and knowledge of three-dimensional objects. First, a process of perceptual organization is used to form groupings and structures in the image that are likely to be invariant over a wide range of viewpoints. Second

Similarity search in high dimensions via hashing

by Aristides Gionis, Piotr Indyk, Rajeev Motwani , 1999
"... The nearest- or near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image dat ..."
Abstract - Cited by 641 (10 self) - Add to MetaCart
The nearest- or near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image
Next 10 →
Results 1 - 10 of 82,390
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University