Results 1 - 10
of
14,523
The X-tree: An index structure for high-dimensional data
- In Proceedings of the Int’l Conference on Very Large Data Bases
, 1996
"... In this paper, we propose a new method for index-ing large amounts of point and spatial data in high-dimensional space. An analysis shows that index structures such as the R*-tree are not adequate for indexing high-dimensional data sets. The major problem of R-tree-based index structures is the over ..."
Abstract
-
Cited by 592 (17 self)
- Add to MetaCart
In this paper, we propose a new method for index-ing large amounts of point and spatial data in high-dimensional space. An analysis shows that index structures such as the R*-tree are not adequate for indexing high-dimensional data sets. The major problem of R-tree-based index structures
R-trees: A Dynamic Index Structure for Spatial Searching
- INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1984
"... In order to handle spatial data efficiently, as required in computer aided design and geo-data applications, a database system needs an index mechanism that will help it retrieve data items quickly according to their spatial locations However, traditional indexing methods are not well suited to data ..."
Abstract
-
Cited by 2750 (0 self)
- Add to MetaCart
In order to handle spatial data efficiently, as required in computer aided design and geo-data applications, a database system needs an index mechanism that will help it retrieve data items quickly according to their spatial locations However, traditional indexing methods are not well suited
Imagenet: A large-scale hierarchical image database
- In CVPR
, 2009
"... The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her ..."
Abstract
-
Cited by 840 (28 self)
- Add to MetaCart
The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce
Unsupervised learning of human action categories using spatial-temporal words
- In Proc. BMVC
, 2006
"... Imagine a video taken on a sunny beach, can a computer automatically tell what is happening in the scene? Can it identify different human activities in the video, such as water surfing, people walking and lying on the beach? To automatically classify or localize different actions in video sequences ..."
Abstract
-
Cited by 494 (8 self)
- Add to MetaCart
is very useful for a variety of tasks, such as video surveillance, objectlevel video summarization, video indexing, digital library organization, etc. However, it remains a challenging task for computers to achieve robust action recognition due to cluttered background, camera motion, occlusion
Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several ..."
Abstract
-
Cited by 502 (22 self)
- Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in k-d space, using k feature-extraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly fine-tuned spatial access methods (SAMs), to answer several
Hierarchical Modelling and Analysis for Spatial Data. Chapman and Hall/CRC,
, 2004
"... Abstract Often, there are two streams in statistical research -one developed by practitioners and other by main stream statisticians. Development of geostatistics is a very good example where pioneering work under realistic assumptions came from mining engineers whereas it is only now that statisti ..."
Abstract
-
Cited by 442 (45 self)
- Add to MetaCart
in There is no doubt that the availability of cheap and powerful computers has increased the interest in ML applications. With spatially correlated data, the maximization of the likelihood requires considerable computer power mainly for two numerical operations: matrix inversion and maximization in multidimensional
VisualSEEk: a fully automated content-based image query system
, 1996
"... We describe a highly functional prototype system for searching by visual features in an image database. The VisualSEEk system is novel in that the user forms the queries by diagramming spatial arrangements of color regions. The system finds the images that contain the most similar arrangements of ..."
Abstract
-
Cited by 762 (31 self)
- Add to MetaCart
of similar regions. Prior to the queries, the system automatically extracts and indexes salient color regions from the images. By utilizing efficient indexing techniques for color information, region sizes and absolute and relative spatial locations, a wide variety of complex joint color/spatial queries may
Model-Based Analysis of Oligonucleotide Arrays: Model Validation, Design Issues and Standard Error Application
, 2001
"... Background: A model-based analysis of oligonucleotide expression arrays we developed previously uses a probe-sensitivity index to capture the response characteristic of a specific probe pair and calculates model-based expression indexes (MBEI). MBEI has standard error attached to it as a measure of ..."
Abstract
-
Cited by 775 (28 self)
- Add to MetaCart
better ranking statistic for filtering genes. We can assign reliability indexes for genes in a specific cluster of interest in hierarchical clustering by resampling clustering trees. A software dChip implementing many of these analysis methods is made available. Conclusions: The model-based approach
Fast subsequence matching in time-series databases
- PROCEEDINGS OF THE 1994 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1994
"... We present an efficient indexing method to locate 1-dimensional subsequences within a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature space ..."
Abstract
-
Cited by 533 (24 self)
- Add to MetaCart
space. Then, these rectangles can be readily indexed using traditional spatial access methods, like the R*-tree [9]. In more detail, we use a sliding window over the data sequence and extract its features; the result is a trail in feature space. We propose an ecient and eective algorithm to divide
Results 1 - 10
of
14,523