Results 1  10
of
68,651
ARACHNID: Adaptive Retrieval Agents Choosing Heuristic Neighborhoods for Information Discovery
, 1997
"... ARACHNID is a distributed algorithm for information discovery in large, dynamic, distributed environments such as the World Wide Web. The approach is based on a distributed, adaptive population of intelligent agents making local decisions. The behavior of the algorithm is analyzed using a simplified ..."
Abstract

Cited by 58 (18 self)
 Add to MetaCart
ARACHNID is a distributed algorithm for information discovery in large, dynamic, distributed environments such as the World Wide Web. The approach is based on a distributed, adaptive population of intelligent agents making local decisions. The behavior of the algorithm is analyzed using a simplified model of the Web environment. This analysis highlights an interesting feature of the Web environment that bodes well for ARACHNID 's search methods. The performance of the algorithm is illustrated using both simulated environments and preliminary experiments in which prototype agents search real Web environments. Interactions are also discussed between unsupervised learning by individual agents and evolution at the population level, along with the role played in both by user relevance feedback. 1 INTRODUCTION Imagine that you are looking for some justreleased product on the Web. You probably have a list of starting points, provided by your favorite search engine or by browsing some digita...
Heuristics for Internet Map Discovery
, 2000
"... Mercator is a program that uses hoplimited probesthe same primitive used in tracerouteto infer an Internet map. It uses informed random address probing to carefully exploring the IP address space when determining router adjacencies, uses sourceroute capable routers wherever possible to enhan ..."
Abstract

Cited by 389 (13 self)
 Add to MetaCart
to enhance the fidelity of the resulting map, and employs novel mechanisms for resolving aliases (interfaces belonging to the same router). This paper describes the design of these heuristics and our experiences with Mercator, and presents some preliminary analysis of the resulting Internet map.
Variable Neighborhood Search
, 1997
"... Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications a ..."
Abstract

Cited by 342 (26 self)
 Add to MetaCart
Variable neighborhood search (VNS) is a recent metaheuristic for solving combinatorial and global optimization problems whose basic idea is systematic change of neighborhood within a local search. In this survey paper we present basic rules of VNS and some of its extensions. Moreover, applications
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
The ant colony optimization metaheuristic
 in New Ideas in Optimization
, 1999
"... Ant algorithms are multiagent systems in which the behavior of each single agent, called artificial ant or ant for short in the following, is inspired by the behavior of real ants. Ant algorithms are one of the most successful examples of swarm intelligent systems [3], and have been applied to many ..."
Abstract

Cited by 385 (23 self)
 Add to MetaCart
Ant algorithms are multiagent systems in which the behavior of each single agent, called artificial ant or ant for short in the following, is inspired by the behavior of real ants. Ant algorithms are one of the most successful examples of swarm intelligent systems [3], and have been applied to many types of problems, ranging from the classical traveling salesman
Taming the Underlying Challenges of Reliable Multihop Routing in Sensor Networks
 In SenSys
, 2003
"... The dynamic and lossy nature of wireless communication poses major challenges to reliable, selforganizing multihop networks. These nonideal characteristics are more problematic with the primitive, lowpower radio transceivers found in sensor networks, and raise new issues that routing protocols mu ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
must address. Link connectivity statistics should be captured dynamically through an efficient yet adaptive link estimator and routing decisions should exploit such connectivity statistics to achieve reliability. Link status and routing information must be maintained in a neighborhood table
LOF: Identifying DensityBased Local Outliers
 PROCEEDINGS OF THE 2000 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 2000
"... For many KDD applications, such as detecting criminal activities in Ecommerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for m ..."
Abstract

Cited by 499 (14 self)
 Add to MetaCart
that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier. This degree is called the local outlier factor (LOF) of an object. It is local in that the degree depends on how isolated the object is with respect to the surrounding neighborhood. We give a detailed formal
Texture Synthesis by Nonparametric Sampling
 In International Conference on Computer Vision
, 1999
"... A nonparametric method for texture synthesis is proposed. The texture synthesis process grows a new image outward from an initial seed, one pixel at a time. A Markov random field model is assumed, and the conditional distribution of a pixel given all its neighbors synthesized so far is estimated by ..."
Abstract

Cited by 1014 (7 self)
 Add to MetaCart
by querying the sample image and finding all similar neighborhoods. The degree of randomness is controlled by a single perceptually intuitive parameter. The method aims at preserving as much local structure as possible and produces good results for a wide variety of synthetic and realworld textures. 1
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
's, computer vision research has been evolving from heuristic design of algorithms to syste...
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 659 (7 self)
 Add to MetaCart
A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately
Results 1  10
of
68,651