Results 1  10
of
22,545
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 683 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 730 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
TABU SEARCH
"... Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore the hallm ..."
Abstract

Cited by 822 (48 self)
 Add to MetaCart
algorithms based on the tabu search. The experimentation shows that the procedures provide high quality solutions to the training problem, and in addition consume a reasonable computational effort.
Tabu Search  Part I
, 1989
"... This paper presents the fundamental principles underlying tabu search as a strategy for combinatorial optimization problems. Tabu search has achieved impressive practical successes in applications ranging from scheduling and computer channel balancing to cluster analysis and space planning, and more ..."
Abstract

Cited by 680 (11 self)
 Add to MetaCart
This paper presents the fundamental principles underlying tabu search as a strategy for combinatorial optimization problems. Tabu search has achieved impressive practical successes in applications ranging from scheduling and computer channel balancing to cluster analysis and space planning
Pushing the Envelope: Planning, Propositional Logic, and Stochastic Search
, 1996
"... Planning is a notoriously hard combinatorial search problem. In many interesting domains, current planning algorithms fail to scale up gracefully. By combining a general, stochastic search algorithm and appropriate problem encodings based on propositional logic, we are able to solve hard planning pr ..."
Abstract

Cited by 579 (33 self)
 Add to MetaCart
Planning is a notoriously hard combinatorial search problem. In many interesting domains, current planning algorithms fail to scale up gracefully. By combining a general, stochastic search algorithm and appropriate problem encodings based on propositional logic, we are able to solve hard planning
The Advantages of Evolutionary Computation
, 1997
"... Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific ..."
Abstract

Cited by 541 (6 self)
 Add to MetaCart
Evolutionary computation is becoming common in the solution of difficult, realworld problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific
Labeling Images with a Computer Game
, 2004
"... We introduce a new interactive system: a game that is fun and can be used to create valuable output. When people play the game they help determine the contents of images by providing meaningful labels for them. If the game is played as much as popular online games, we estimate that most images on ..."
Abstract

Cited by 773 (11 self)
 Add to MetaCart
makes a significant contribution because of its valuable output and because of the way it addresses the imagelabeling problem. Rather than using computer vision techniques, which don't work well enough, we encourage people to do the work by taking advantage of their desire to be entertained.
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanulysis.)
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical
Ant Colony System: A cooperative learning approach to the traveling salesman problem
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
, 1997
"... This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a pher ..."
Abstract

Cited by 1029 (53 self)
 Add to MetaCart
This paper introduces the ant colony system (ACS), a distributed algorithm that is applied to the traveling salesman problem (TSP). In the ACS, a set of cooperating agents called ants cooperate to find good solutions to TSP’s. Ants cooperate using an indirect form of communication mediated by a
Results 1  10
of
22,545