Results 1 -
1 of
1
Heuristic Selection of Actions in Multiagent Reinforcement Learning ∗
"... This work presents a new algorithm, called Heuristically Accelerated Minimax-Q (HAMMQ), that allows the use of heuristics to speed up the wellknown Multiagent Reinforcement Learning algorithm Minimax-Q. A heuristic function H that influences the choice of the actions characterises the HAMMQ algorith ..."
Abstract
-
Cited by 13 (2 self)
- Add to MetaCart
This work presents a new algorithm, called Heuristically Accelerated Minimax-Q (HAMMQ), that allows the use of heuristics to speed up the wellknown Multiagent Reinforcement Learning algorithm Minimax-Q. A heuristic function H that influences the choice of the actions characterises the HAMMQ