Results 1  10
of
1,384,537
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Domain names  Implementation and Specification
 RFC883, USC/Information Sciences Institute
, 1983
"... This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names Concepts and Facilities " [RFC1034]. The domain system is a mixture of functions and data types which are an official pr ..."
Abstract

Cited by 715 (9 self)
 Add to MetaCart
This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names Concepts and Facilities " [RFC1034]. The domain system is a mixture of functions and data types which are an official
Improving generalization with active learning
 Machine Learning
, 1994
"... Abstract. Active learning differs from "learning from examples " in that the learning algorithm assumes at least some control over what part of the input domain it receives information about. In some situations, active learning is provably more powerful than learning from examples ..."
Abstract

Cited by 539 (1 self)
 Add to MetaCart
neural network. In selective sampling, a learner receives distribution information from the environment and queries an oracle on parts of the domain it considers "useful. " We test our implementation, called an SGnetwork, on three domains and observe significant improvement
Understanding Normal and Impaired Word Reading: Computational Principles in QuasiRegular Domains
 PSYCHOLOGICAL REVIEW
, 1996
"... We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract

Cited by 583 (94 self)
 Add to MetaCart
We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic
GOLOG: A Logic Programming Language for Dynamic Domains
, 1994
"... This paper proposes a new logic programming language called GOLOG whose interpreter automatically maintains an explicit representation of the dynamic world being modeled, on the basis of user supplied axioms about the preconditions and effects of actions and the initial state of the world. This allo ..."
Abstract

Cited by 621 (72 self)
 Add to MetaCart
This paper proposes a new logic programming language called GOLOG whose interpreter automatically maintains an explicit representation of the dynamic world being modeled, on the basis of user supplied axioms about the preconditions and effects of actions and the initial state of the world. This allows programs to reason about the state of the world and consider the effects of various possible courses of action before committing to a particular behavior. The net effect is that programs may be written at a much higher level of abstraction than is usually possible. The language appears well suited for applications in high level control of robots and industrial processes, intelligent software agents, discrete event simulation, etc. It is based on a formal theory of action specified in an extended version of the situation calculus. A prototype implementation in Prolog has been developed.
Eliciting selfexplanations improves understanding
 Cognitive Science
, 1994
"... Learning involves the integration of new information into existing knowledge. Generoting explanations to oneself (selfexplaining) facilitates that integration process. Previously, selfexplanation has been shown to improve the acquisition of problemsolving skills when studying workedout examples. ..."
Abstract

Cited by 556 (22 self)
 Add to MetaCart
Learning involves the integration of new information into existing knowledge. Generoting explanations to oneself (selfexplaining) facilitates that integration process. Previously, selfexplanation has been shown to improve the acquisition of problemsolving skills when studying workedout examples
PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains
, 2003
"... In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, ..."
Abstract

Cited by 601 (41 self)
 Add to MetaCart
, planetary rover exploration and spacecraft control domains. Other temporal and resourceintensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Mining Sequential Patterns: Generalizations and Performance Improvements
 Research Report RJ 9994, IBM Almaden Research
, 1995
"... Abstract. The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a user ..."
Abstract

Cited by 748 (5 self)
 Add to MetaCart
Abstract. The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a userspeci ed minimum support, where the support of a pattern is the number of datasequences that contain the pattern. An example of a sequential pattern is \5 % of customers bought `Foundation' and `Ringworld ' in one transaction, followed by `Second Foundation ' in a later transaction". We generalize the problem as follows. First, we add time constraints that specify a minimum and/or maximum time period between adjacent elements in a pattern. Second, we relax the restriction that the items in an element of a sequential pattern must come from the same transaction, instead allowing the items to be present in a set of transactions whose transactiontimes are within a userspeci ed time window. Third, given a userde ned taxonomy (isa hierarchy) on items, we allow sequential patterns to include items across all levels of the taxonomy. We present GSP, a new algorithm that discovers these generalized sequential patterns. Empirical evaluation using synthetic and reallife data indicates that GSP is much faster than the AprioriAll algorithm presented in [3]. GSP scales linearly with the number of datasequences, and has very good scaleup properties with respect to the average datasequence size. 1
Results 1  10
of
1,384,537