Results 1  10
of
5,688
Group Lasso with Overlap and Graph Lasso
"... We propose a new penalty function which, when used as regularization for empirical risk minimization procedures, leads to sparse estimators. The support of the sparse vector is typically a union of potentially overlapping groups of covariates defined a priori, or a set of covariates which tend to be ..."
Abstract

Cited by 229 (20 self)
 Add to MetaCart
to be connected to each other when a graph of covariates is given. We study theoretical properties of the estimator, and illustrate its behavior on simulated and breast cancer gene expression data. 1.
High dimensional graphs and variable selection with the Lasso
 ANNALS OF STATISTICS
, 2006
"... The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso is a ..."
Abstract

Cited by 751 (23 self)
 Add to MetaCart
The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables. Covariance selection aims at estimating those structural zeros from data. We show that neighborhood selection with the Lasso
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
. Recently, an approach based on optimization by graphcut has been developed which successfully combines both types of information. In this paper we extend the graphcut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS
Symbolic Model Checking without BDDs
, 1999
"... Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis ..."
Abstract

Cited by 910 (74 self)
 Add to MetaCart
Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis & Putnam Procedure [7], can replace BDDs. This new technique avoids the space blow up of BDDs, generates counterexamples much faster, and sometimes speeds up the verification. In addition, it produces counterexamples of minimal length. We introduce a bounded model checking procedure for LTL which reduces model checking to propositional satisfiability. We show that bounded LTL model checking can be done without a tableau construction. We have implemented a model checker BMC, based on bounded model checking, and preliminary results are presented.
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that has been contaminated with additive noise, the goal is to identify which elementary signals participated and to approximate their coefficients. Although many algorithms have been proposed, there is little theory which guarantees that these algorithms can accurately and efficiently solve the problem. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure that convex relaxation succeeds. As evidence of the broad impact of these results, the paper describes how convex relaxation can be used for several concrete signal recovery problems. It also describes applications to channel coding, linear regression, and numerical analysis.
Novel methods improve prediction of species’ distributions from occurrence data
 Ecography
, 2006
"... occurrence data ..."
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
The generalized LASSO
 IEEE Transactions on Neural Networks
"... Abstract—In the last few years, the support vector machine (SVM) method has motivated new interest in kernel regression techniques. Although the SVM has been shown to exhibit excellent generalization properties in many experiments, it suffers from several drawbacks, both of a theoretical and a techn ..."
Abstract

Cited by 72 (0 self)
 Add to MetaCart
this approach generalized LASSO regression. It has a clear probabilistic interpretation, can handle learning sets that are corrupted by outliers, produces extremely sparse solutions, and is capable of dealing with largescale problems. For regression functionals which can be modeled as iteratively reweighted
Results 1  10
of
5,688