Results 1  10
of
530,919
On Global Linearization
 SIAMAMS Proceedings
, 1969
"... PARALINDbased blind joint angle and delay estimation for multipath signals with uniform ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
PARALINDbased blind joint angle and delay estimation for multipath signals with uniform
Global Optimization with Polynomials and the Problem of Moments
 SIAM JOURNAL ON OPTIMIZATION
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear ma ..."
Abstract

Cited by 577 (48 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Virtual time and global states of distributed systems.
 Proc. Workshop on Parallel and Distributed Algorithms,
, 1989
"... Abstract A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized \ r eal world" and helps to solve problems like getting a c ..."
Abstract

Cited by 744 (5 self)
 Add to MetaCart
Abstract A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized \ r eal world" and helps to solve problems like getting a
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 532 (6 self)
 Add to MetaCart
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a
Automatic verification of finitestate concurrent systems using temporal logic specifications
 ACM Transactions on Programming Languages and Systems
, 1986
"... We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent ..."
Abstract

Cited by 1388 (62 self)
 Add to MetaCart
We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent
A fast iterative shrinkagethresholding algorithm with application to . . .
, 2009
"... We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract

Cited by 1058 (9 self)
 Add to MetaCart
We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast
Fast linear iterations for distributed averaging.
 Systems & Control Letters,
, 2004
"... Abstract We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging ..."
Abstract

Cited by 433 (12 self)
 Add to MetaCart
converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based on the Laplacian of the associated graph. We show how problem structure can
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 727 (1 self)
 Add to MetaCart
surfaces are found by solving a linearly constrained quadratic programming problem. This optimization problem is challenging because the quadratic form is completely dense and the memory requirements grow with the square of the number of data points. We present a decomposition algorithm that guarantees
Efficient graphbased image segmentation.
 International Journal of Computer Vision,
, 2004
"... Abstract. This paper addresses the problem of segmenting an image into regions. We define a predicate for measuring the evidence for a boundary between two regions using a graphbased representation of the image. We then develop an efficient segmentation algorithm based on this predicate, and show ..."
Abstract

Cited by 940 (1 self)
 Add to MetaCart
that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties. We apply the algorithm to image segmentation using two different kinds of local neighborhoods in constructing the graph, and illustrate the results with both real and synthetic images. The algorithm
Efficient belief propagation for early vision
 In CVPR
, 2004
"... Markov random field models provide a robust and unified framework for early vision problems such as stereo, optical flow and image restoration. Inference algorithms based on graph cuts and belief propagation yield accurate results, but despite recent advances are often still too slow for practical u ..."
Abstract

Cited by 515 (8 self)
 Add to MetaCart
use. In this paper we present new algorithmic techniques that substantially improve the running time of the belief propagation approach. One of our techniques reduces the complexity of the inference algorithm to be linear rather than quadratic in the number of possible labels for each pixel, which
Results 1  10
of
530,919