Results 1  10
of
43,871
Perfect Simulation of Point Processes Given Noisy Observations
, 2001
"... The paper is concerned with the exact simulation of an unobserved true point process conditional on a noisy observation. We use dominated coupling from the past (CFTP) on an augmented state space to produce perfect samples of the target marked point process. An optimized coupling of the target chain ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The paper is concerned with the exact simulation of an unobserved true point process conditional on a noisy observation. We use dominated coupling from the past (CFTP) on an augmented state space to produce perfect samples of the target marked point process. An optimized coupling of the target
Fuzzy extractors: How to generate strong keys from biometrics and other noisy data
, 2008
"... We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying mater ..."
Abstract

Cited by 535 (38 self)
 Add to MetaCart
We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying
The Central Role of the Propensity Score in Observational Studies for Causal Effects.
 Biometrika
, 1983
"... SUMMARY The propensity score is the conditional probability of assignment to a particular treatment given a vector of observed covariates. Both large and small sample theory show that adjustment for the scalar propensity score is sufficient to remove bias due to all observed covariates. Application ..."
Abstract

Cited by 2779 (26 self)
 Add to MetaCart
SUMMARY The propensity score is the conditional probability of assignment to a particular treatment given a vector of observed covariates. Both large and small sample theory show that adjustment for the scalar propensity score is sufficient to remove bias due to all observed covariates
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
X passes to its parent U; is given by: and the message X sends to its child Y j is given by: k;Cj For noisyor links between parents and children, there exists an analytic expression for 1r( x) and Ax ( u;) that avoids the exhaustive enumeration over parent config urations We made a slight
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 561 (18 self)
 Add to MetaCart
, capitalization, formatting, partofspeech), and defines the conditional probability of state sequences given observation sequences. It does this by using the maximum entropy framework to fit a set of exponential models that represent the probability of a state given an observation and the previous state. We
User Cooperation Diversity  Part I: System Description
 IEEE TRANS. COMMUN
, 1998
"... Mobile users' data rate and quality of service are limited by the fact that, within the duration of any given call, they experience severe variations in signal attenuation, thereby necessitating the use of some type of diversity. In this twopart paper, we propose a new form of spatial diver ..."
Abstract

Cited by 669 (22 self)
 Add to MetaCart
Mobile users' data rate and quality of service are limited by the fact that, within the duration of any given call, they experience severe variations in signal attenuation, thereby necessitating the use of some type of diversity. In this twopart paper, we propose a new form of spatial
Matching pursuits with timefrequency dictionaries
 IEEE Transactions on Signal Processing
, 1993
"... AbstractWe introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures t ..."
Abstract

Cited by 1671 (13 self)
 Add to MetaCart
matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. We compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 573 (29 self)
 Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However
Algebraic laws for nondeterminism and concurrency
 Journal of the ACM
, 1985
"... Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly with its environment, its meaning cannot be presented naturally as an input/output function (as is often done in the denotational approach to semantics). In this paper, an alternative is put forth. Firs ..."
Abstract

Cited by 608 (13 self)
 Add to MetaCart
. First, a definition is given of what it is for two programs or program parts to be equivalent for all observers; then two program parts are said to be observation congruent iff they are, in all program contexts, equivalent. The behavior of a program part, that is, its meaning, is defined to be its
Learning realistic human actions from movies
 IN: CVPR.
, 2008
"... The aim of this paper is to address recognition of natural human actions in diverse and realistic video settings. This challenging but important subject has mostly been ignored in the past due to several problems one of which is the lack of realistic and annotated video datasets. Our first contribut ..."
Abstract

Cited by 738 (48 self)
 Add to MetaCart
oftheart results on the standard KTH action dataset by achieving 91.8 % accuracy. Given the inherent problem of noisy labels in automatic annotation, we particularly investigate and show high tolerance of our method to annotation errors in the training set. We finally apply the method to learning and classifying
Results 1  10
of
43,871