Results 1  10
of
3,110,812
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 642 (1 self)
 Add to MetaCart
processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from
Singularity Detection And Processing With Wavelets
 IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract

Cited by 590 (13 self)
 Add to MetaCart
Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales
Qualitative process theory
 MIT AI Lab Memo
, 1982
"... Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well ..."
Abstract

Cited by 884 (92 self)
 Add to MetaCart
Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well
Efficient region tracking with parametric models of geometry and illumination
 PAMI
, 1998
"... Abstract—As an object moves through the field of view of a camera, the images of the object may change dramatically. This is not simply due to the translation of the object across the image plane. Rather, complications arise due to the fact that the object undergoes changes in pose relative to the v ..."
Abstract

Cited by 555 (26 self)
 Add to MetaCart
for handling the geometric distortions produced by changes in pose. We then combine geometry and illumination into an algorithm that tracks large image regions using no more computation than would be required to track with no accommodation for illumination changes. Finally, we augment these methods
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals. Although bootstrapping often works well, it does not do so in every case.
Hierarchical modelbased motion estimation
, 1992
"... This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) a,re a global model that constrains the overall structure of the motion estimated, a local rnodel that ..."
Abstract

Cited by 667 (15 self)
 Add to MetaCart
that is used in the estimation process, and a coa,rsefine refinement strategy. Four specific motion models: affine flow, planar surface flow, rigid body motion, and general optical flow, are described along with their application to specific examples.
GromovWitten classes, quantum cohomology, and enumerative geometry
 Commun. Math. Phys
, 1994
"... The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological ..."
Abstract

Cited by 484 (3 self)
 Add to MetaCart
The paper is devoted to the mathematical aspects of topological quantum field theory and its applications to enumerative problems of algebraic geometry. In particular, it contains an axiomatic treatment of Gromov–Witten classes, and a discussion of their properties for Fano varieties. Cohomological
Results 1  10
of
3,110,812