Results 1  10
of
1,177,737
Codes and Decoding on General Graphs
, 1996
"... Iterative decoding techniques have become a viable alternative for constructing high performance coding systems. In particular, the recent success of turbo codes indicates that performance close to the Shannon limit may be achieved. In this thesis, it is showed that many iterative decoding algorithm ..."
Abstract

Cited by 359 (1 self)
 Add to MetaCart
algorithms are special cases of two generic algorithms, the minsum and sumproduct algorithms, which also include noniterative algorithms such as Viterbi decoding. The minsum and sumproduct algorithms are developed and presented as generalized trellis algorithms, where the time axis of the trellis
An algorithm for drawing general undirected graphs
 Information Processing Letters
, 1989
"... Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets, and entit ..."
Abstract

Cited by 690 (2 self)
 Add to MetaCart
Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, dataflow graphs, Petri nets
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
Partitioning Properties of General Graphs
, 2003
"... this technical report, we will make an abstraction of the circuit concept, and focus on the partitioning properties of general graphs ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
this technical report, we will make an abstraction of the circuit concept, and focus on the partitioning properties of general graphs
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
On extremal problems of graphs and generalized graphs
 Israel J. Math
, 1964
"... An rgraph is a graph whose basic elements are its vertices and rtuples. It is proved that to every 1 and r there is an e(l, r) so that for n> no every rgraph of n vertices and n 'E(i, r) rtuples contains r. /vertices P),I5 j < r, l < i < l, so that all the rtuples (x i, ( 1), ..."
Abstract

Cited by 104 (1 self)
 Add to MetaCart
An rgraph is a graph whose basic elements are its vertices and rtuples. It is proved that to every 1 and r there is an e(l, r) so that for n> no every rgraph of n vertices and n 'E(i, r) rtuples contains r. /vertices P),I5 j < r, l < i < l, so that all the rtuples (x i, ( 1
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Interprocedural Slicing Using Dependence Graphs
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1990
"... ... This paper concerns the problem of interprocedural slicinggenerating a slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a new kind of graph to represent programs, called a system dependence graph, which extends previou ..."
Abstract

Cited by 822 (85 self)
 Add to MetaCart
... This paper concerns the problem of interprocedural slicinggenerating a slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a new kind of graph to represent programs, called a system dependence graph, which extends
Results 1  10
of
1,177,737