Results 1 - 10
of
18,559
Missing value estimation methods for DNA microarrays
, 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clu ..."
Abstract
-
Cited by 477 (24 self)
- Add to MetaCart
Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
- Biostatistics,
, 2003
"... SUMMARY In this paper we report exploratory analyses of high-density oligonucleotide array data from the Affymetrix GeneChip R system with the objective of improving upon currently used measures of gene expression. Our analyses make use of three data sets: a small experimental study consisting of f ..."
Abstract
-
Cited by 854 (33 self)
- Add to MetaCart
SUMMARY In this paper we report exploratory analyses of high-density oligonucleotide array data from the Affymetrix GeneChip R system with the objective of improving upon currently used measures of gene expression. Our analyses make use of three data sets: a small experimental study consisting
Model-Based Analysis of Oligonucleotide Arrays: Model Validation, Design Issues and Standard Error Application
, 2001
"... Background: A model-based analysis of oligonucleotide expression arrays we developed previously uses a probe-sensitivity index to capture the response characteristic of a specific probe pair and calculates model-based expression indexes (MBEI). MBEI has standard error attached to it as a measure of ..."
Abstract
-
Cited by 775 (28 self)
- Add to MetaCart
of accuracy. Here we investigate the stability of the probe-sensitivity index across different tissue types, the reproducibility of results in replicate experiments, and the use of MBEI in perfect match (PM)-only arrays. Results: Probe-sensitivity indexes are stable across tissue types. The target gene
Gene selection for cancer classification using support vector machines
- Machine Learning
"... Abstract. DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must ..."
Abstract
-
Cited by 1115 (24 self)
- Add to MetaCart
Abstract. DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must
Using Bayesian networks to analyze expression data
- Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract
-
Cited by 1088 (17 self)
- Add to MetaCart
DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key
Blind Beamforming for Non Gaussian Signals
- IEE Proceedings-F
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract
-
Cited by 719 (31 self)
- Add to MetaCart
This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray
Tensor Decompositions and Applications
- SIAM REVIEW
, 2009
"... This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N -way array. Decompositions of higher-order tensors (i.e., N -way arrays with N ⥠3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract
-
Cited by 723 (18 self)
- Add to MetaCart
This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N -way array. Decompositions of higher-order tensors (i.e., N -way arrays with N ⥠3) have applications in psychometrics, chemometrics, signal
A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized t-Test and Statistical Inferences of Gene Changes
- Bioinformatics
, 2001
"... Motivation: DNA microarrays are now capable of providing genome-wide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract
-
Cited by 491 (6 self)
- Add to MetaCart
Motivation: DNA microarrays are now capable of providing genome-wide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory
Empirical Bayes Analysis of a Microarray Experiment
- Journal of the American Statistical Association
, 2001
"... Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typical microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous inference. We consider one such experiment in whi ..."
Abstract
-
Cited by 492 (20 self)
- Add to MetaCart
in which oligonucleotide arrays were employed to assess the genetic effects of ionizing radiation on seven thousand human genes. A simple nonparametric empirical Bayes model is introduced, which is used to guide the ef � cient reduction of the data to a single summary statistic per gene, and also to make
Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation
, 2002
"... There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is ..."
Abstract
-
Cited by 718 (9 self)
- Add to MetaCart
There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment
Results 1 - 10
of
18,559