Results 11  20
of
1,307,030
Gaussian interference channel capacity to within one bit
 5534–5562, 2008. EURASIP Journal on Advances in Signal Processing
"... Abstract—The capacity of the twouser Gaussian interference channel has been open for 30 years. The understanding on this problem has been limited. The best known achievable region is due to Han and Kobayashi but its characterization is very complicated. It is also not known how tight the existing o ..."
Abstract

Cited by 451 (28 self)
 Add to MetaCart
Abstract—The capacity of the twouser Gaussian interference channel has been open for 30 years. The understanding on this problem has been limited. The best known achievable region is due to Han and Kobayashi but its characterization is very complicated. It is also not known how tight the existing
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
law), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
DART: Directed automated random testing
 In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static sourcecode parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract

Cited by 823 (41 self)
 Add to MetaCart
techniques constitute Directed Automated Random Testing,or DART for short. The main strength of DART is thus that testing can be performed completely automatically on any program that compiles – there is no need to write any test driver or harness code. During testing, DART detects standard errors
Spacetime codes for high data rate wireless communication: Performance criterion and code construction
 IEEE TRANS. INFORM. THEORY
, 1998
"... We consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas. Data is encoded by a channel code and the encoded data is split into n streams that are simultaneously transmitted using n transmit ant ..."
Abstract

Cited by 1762 (28 self)
 Add to MetaCart
for high data rate wireless communication. The encoding/decoding complexity of these codes is comparable to trellis codes employed in practice over Gaussian channels. The codes constructed here provide the best tradeoff between data rate, diversity advantage, and trellis complexity. Simulation results
Shallow Parsing with Conditional Random Fields
, 2003
"... Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard evaluati ..."
Abstract

Cited by 575 (8 self)
 Add to MetaCart
Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard
Network Coding for Large Scale Content Distribution
"... We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling of bloc ..."
Abstract

Cited by 497 (6 self)
 Add to MetaCart
We propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks of information. The randomization introduced by the coding process eases the scheduling
The ratedistortion function for source coding with side information at the decoder
 IEEE Trans. Inform. Theory
, 1976
"... AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a seque ..."
Abstract

Cited by 1055 (1 self)
 Add to MetaCart
AbstractLet {(X,, Y,J}r = 1 be a sequence of independent drawings of a pair of dependent random variables X, Y. Let us say that X takes values in the finite set 6. It is desired to encode the sequence {X,} in blocks of length n into a binary stream*of rate R, which can in turn be decoded as a
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 569 (9 self)
 Add to MetaCart
In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly
Results 11  20
of
1,307,030