Results 1  10
of
3,328,311
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12922 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
The "Independent Components" of Natural Scenes are Edge Filters
, 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract

Cited by 611 (29 self)
 Add to MetaCart
distributions. We compare the resulting ICA filters and their associated basis functions, with other decorrelating filters produced by Principal Components Analysis (PCA) and zerophase whitening filters (ZCA). The ICA filters have more sparsely distributed (kurtotic) outputs on natural scenes. They also
A combined corner and edge detector
 In Proc. of Fourth Alvey Vision Conference
, 1988
"... Consistency of image edge filtering is of prime importance for 3D interpretation of image sequences using feature tracking algorithms. To cater for image regions containing texture and isolated features, a combined corner and edge detector based on the local autocorrelation function is utilised, an ..."
Abstract

Cited by 2424 (2 self)
 Add to MetaCart
Consistency of image edge filtering is of prime importance for 3D interpretation of image sequences using feature tracking algorithms. To cater for image regions containing texture and isolated features, a combined corner and edge detector based on the local autocorrelation function is utilised
Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm
 Machine Learning
, 1988
"... learning Boolean functions, linearthreshold algorithms Abstract. Valiant (1984) and others have studied the problem of learning various classes of Boolean functions from examples. Here we discuss incremental learning of these functions. We consider a setting in which the learner responds to each ex ..."
Abstract

Cited by 766 (5 self)
 Add to MetaCart
example according to a current hypothesis. Then the learner updates the hypothesis, if necessary, based on the correct classification of the example. One natural measure of the quality of learning in this setting is the number of mistakes the learner makes. For suitable classes of functions, learning
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 755 (28 self)
 Add to MetaCart
We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity
Sparse coding with an overcomplete basis set: a strategy employed by V1
 Vision Research
, 1997
"... The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive f ..."
Abstract

Cited by 942 (9 self)
 Add to MetaCart
The spatial receptive fields of simple cells in mammalian striate cortex have been reasonably well described physiologically and can be characterized as being localized, oriented, and ban@ass, comparable with the basis functions of wavelet transforms. Previously, we have shown that these receptive
Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations
, 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front also can be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract

Cited by 1167 (60 self)
 Add to MetaCart
in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be also used for more general HamiltonJacobitype problems. We demonstrate our algorithms
Selfdetermination theory and the facilitation of intrinsic motivation, social development, and wellbeing
 American Psychologist
, 2000
"... Human beings can be proactive and engaged or, alternatively, passive and alienated, largely as a function of the social conditions in which they develop and function. Accordingly, research guided by selfdetermination theo~ has focused on the socialcontextual conditions that facilitate versus fores ..."
Abstract

Cited by 1456 (32 self)
 Add to MetaCart
Human beings can be proactive and engaged or, alternatively, passive and alienated, largely as a function of the social conditions in which they develop and function. Accordingly, research guided by selfdetermination theo~ has focused on the socialcontextual conditions that facilitate versus
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
of the sources. The GramCharlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural
Hierarchical Models of Object Recognition in Cortex
, 1999
"... The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore th ..."
Abstract

Cited by 809 (83 self)
 Add to MetaCart
The classical model of visual processing in cortex is a hierarchy of increasingly sophisticated representations, extending in a natural way the model of simple to complex cells of Hubel and Wiesel. Somewhat surprisingly, little quantitative modeling has been done in the last 15 years to explore
Results 1  10
of
3,328,311