Results 1  10
of
2,929,823
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Policy Gradient Methods for Reinforcement Learning with Function Approximation
, 1999
"... Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly represented by i ..."
Abstract

Cited by 433 (20 self)
 Add to MetaCart
Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly represented
Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition
 in Conference Record of The TwentySeventh Asilomar Conference on Signals, Systems and Computers
, 1993
"... In this paper we describe a recursive algorithm to compute representations of functions with respect to nonorthogonal and possibly overcomplete dictionaries of elementary building blocks e.g. aiEne (wa.velet) frames. We propoeea modification to the Matching Pursuit algorithm of Mallat and Zhang (199 ..."
Abstract

Cited by 622 (1 self)
 Add to MetaCart
In this paper we describe a recursive algorithm to compute representations of functions with respect to nonorthogonal and possibly overcomplete dictionaries of elementary building blocks e.g. aiEne (wa.velet) frames. We propoeea modification to the Matching Pursuit algorithm of Mallat and Zhang
Stable Function Approximation in Dynamic Programming
 IN MACHINE LEARNING: PROCEEDINGS OF THE TWELFTH INTERNATIONAL CONFERENCE
, 1995
"... The success of reinforcement learning in practical problems depends on the ability tocombine function approximation with temporal difference methods such as value iteration. Experiments in this area have produced mixed results; there have been both notable successes and notable disappointments. Theo ..."
Abstract

Cited by 263 (6 self)
 Add to MetaCart
The success of reinforcement learning in practical problems depends on the ability tocombine function approximation with temporal difference methods such as value iteration. Experiments in this area have produced mixed results; there have been both notable successes and notable disappointments
An analysis of temporaldifference learning with function approximation
 IEEE Transactions on Automatic Control
, 1997
"... We discuss the temporaldifference learning algorithm, as applied to approximating the costtogo function of an infinitehorizon discounted Markov chain. The algorithm weanalyze updates parameters of a linear function approximator online, duringasingle endless trajectory of an irreducible aperiodi ..."
Abstract

Cited by 311 (8 self)
 Add to MetaCart
We discuss the temporaldifference learning algorithm, as applied to approximating the costtogo function of an infinitehorizon discounted Markov chain. The algorithm weanalyze updates parameters of a linear function approximator online, duringasingle endless trajectory of an irreducible
Residual Algorithms: Reinforcement Learning with Function Approximation
 In Proceedings of the Twelfth International Conference on Machine Learning
, 1995
"... A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system, such ..."
Abstract

Cited by 306 (6 self)
 Add to MetaCart
A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
Optimal approximation by piecewise smooth functions and associated variational problems
 Commun. Pure Applied Mathematics
, 1989
"... (Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. ..."
Abstract

Cited by 1290 (14 self)
 Add to MetaCart
(Article begins on next page) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mumford, David Bryant, and Jayant Shah. 1989. Optimal approximations by piecewise smooth functions and associated variational problems
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 822 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
Results 1  10
of
2,929,823