Results 1  10
of
1,891,188
EntropyBased Algorithms For Best Basis Selection
 IEEE Transactions on Information Theory
, 1992
"... pretations (position, frequency, and scale), and we have experimented with featureextraction methods that use bestbasis compression for frontend complexity reduction. The method relies heavily on the remarkable orthogonality properties of the new libraries. It is obviously a nonlinear transformat ..."
Abstract

Cited by 670 (20 self)
 Add to MetaCart
pretations (position, frequency, and scale), and we have experimented with featureextraction methods that use bestbasis compression for frontend complexity reduction. The method relies heavily on the remarkable orthogonality properties of the new libraries. It is obviously a nonlinear
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2837 (11 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
 Neural Computation
, 2003
"... Abstract One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low dimensional manifold embedded in a high dimensional space. Drawing on the corr ..."
Abstract

Cited by 1205 (16 self)
 Add to MetaCart
Abstract One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low dimensional manifold embedded in a high dimensional space. Drawing
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Statecharts: A Visual Formalism For Complex Systems
, 1987
"... We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discreteevent systems, such as multicomputer realtime systems, communication protocols and digital control units. Our diagrams, which we cal ..."
Abstract

Cited by 2683 (56 self)
 Add to MetaCart
We present a broad extension of the conventional formalism of state machines and state diagrams, that is relevant to the specification and design of complex discreteevent systems, such as multicomputer realtime systems, communication protocols and digital control units. Our diagrams, which we
KLEE: Unassisted and Automatic Generation of HighCoverage Tests for Complex Systems Programs
"... We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentallyintensive programs. We used KLEE to thoroughly check all 89 standalone programs in the GNU COREUTILS utility suite, which form the cor ..."
Abstract

Cited by 541 (14 self)
 Add to MetaCart
We present a new symbolic execution tool, KLEE, capable of automatically generating tests that achieve high coverage on a diverse set of complex and environmentallyintensive programs. We used KLEE to thoroughly check all 89 standalone programs in the GNU COREUTILS utility suite, which form
A Volumetric Method for Building Complex Models from Range Images
, 1996
"... A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robus ..."
Abstract

Cited by 1018 (18 self)
 Add to MetaCart
A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, and robustness in the presence of outliers. Prior algorithms possess subsets of these properties. In this paper, we present a volumetric method for integrating range images that possesses all of these properties. Our volumetric representation consists of a cumulative weighted signed distance function. Working with one range image at a time, we first scanconvert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a runlength encoding of the volume. To achieve time efficiency, we resample the range image to align with the voxel grid and traverse the range and voxel scanlines synchronously. We generate the f...
Linguistic Complexity: Locality of Syntactic Dependencies
 COGNITION
, 1998
"... This paper proposes a new theory of the relationship between the sentence processing mechanism and the available computational resources. This theory  the Syntactic Prediction Locality Theory (SPLT)  has two components: an integration cost component and a component for the memory cost associa ..."
Abstract

Cited by 486 (31 self)
 Add to MetaCart
This paper proposes a new theory of the relationship between the sentence processing mechanism and the available computational resources. This theory  the Syntactic Prediction Locality Theory (SPLT)  has two components: an integration cost component and a component for the memory cost associated with keeping track of obligatory syntactic requirements. Memory cost is
Results 1  10
of
1,891,188