Results 1 - 10
of
150,407
GREW—A Scalable Frequent Subgraph Discovery Algorithm
- in Fourth IEEE International Conference on Data Mining (ICDM 2004). 2004
, 2003
"... Existing algorithms that mine graph datasets to discover patterns corresponding to frequently occurring subgraphs can operate efficiently on graphs that are sparse, contain a large number of relatively small connected components, have vertices with low and bounded degrees, and contain well-labeled v ..."
Abstract
-
Cited by 20 (0 self)
- Add to MetaCart
Existing algorithms that mine graph datasets to discover patterns corresponding to frequently occurring subgraphs can operate efficiently on graphs that are sparse, contain a large number of relatively small connected components, have vertices with low and bounded degrees, and contain well
Frequent Subgraph Discovery
, 2001
"... Over the years, frequent itemset discovery algorithms have been used to solve various interesting problems. As data mining techniques are being increasingly applied to non-traditional domains, existing approaches for finding frequent itemsets cannot be used as they cannot model the requirement of th ..."
Abstract
-
Cited by 407 (14 self)
- Add to MetaCart
Over the years, frequent itemset discovery algorithms have been used to solve various interesting problems. As data mining techniques are being increasingly applied to non-traditional domains, existing approaches for finding frequent itemsets cannot be used as they cannot model the requirement
Discovery of frequent episodes in event sequences
- Data Min. Knowl. Discov
, 1997
"... Abstract. Sequences of events describing the behavior and actions of users or systems can be collected in several domains. An episode is a collection of events that occur relatively close to each other in a given partial order. We consider the problem of discovering frequently occurring episodes in ..."
Abstract
-
Cited by 355 (13 self)
- Add to MetaCart
in a sequence. Once such episodes are known, one can produce rules for describing or predicting the behavior of the sequence. We give efficient algorithms for the discovery of all frequent episodes from a given class of episodes, and present detailed experimental results. The methods are in use
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract
-
Cited by 1108 (51 self)
- Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Frequent Sub-Structure-Based Approaches for Classifying Chemical Compounds
- In Proceedings of ICDM’03
, 2003
"... In this paper we study the problem of classifying chemical compound datasets. We present a sub-structure-based classification algorithm that decouples the sub-structure discovery process from the classification model construction and uses frequent subgraph discovery algorithms to find all topologi ..."
Abstract
-
Cited by 141 (6 self)
- Add to MetaCart
In this paper we study the problem of classifying chemical compound datasets. We present a sub-structure-based classification algorithm that decouples the sub-structure discovery process from the classification model construction and uses frequent subgraph discovery algorithms to find all
Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach
- DATA MINING AND KNOWLEDGE DISCOVERY
, 2004
"... Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still co ..."
Abstract
-
Cited by 1700 (64 self)
- Add to MetaCart
databases, which dramatically reduces the search space. Our performance
study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns,
and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported
new
Focused crawling: a new approach to topic-specific Web resource discovery
, 1999
"... The rapid growth of the World-Wide Web poses unprecedented scaling challenges for general-purpose crawlers and search engines. In this paper we describe a new hypertext resource discovery system called a Focused Crawler. The goal of a focused crawler is to selectively seek out pages that are relevan ..."
Abstract
-
Cited by 628 (10 self)
- Add to MetaCart
The rapid growth of the World-Wide Web poses unprecedented scaling challenges for general-purpose crawlers and search engines. In this paper we describe a new hypertext resource discovery system called a Focused Crawler. The goal of a focused crawler is to selectively seek out pages
From data mining to knowledge discovery in databases
- AI Magazine
, 1996
"... ■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases ..."
Abstract
-
Cited by 510 (0 self)
- Add to MetaCart
■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery
SPADE: An efficient algorithm for mining frequent sequences
- Machine Learning
, 2001
"... Abstract. In this paper we present SPADE, a new algorithm for fast discovery of Sequential Patterns. The existing solutions to this problem make repeated database scans, and use complex hash structures which have poor locality. SPADE utilizes combinatorial properties to decompose the original proble ..."
Abstract
-
Cited by 426 (16 self)
- Add to MetaCart
Abstract. In this paper we present SPADE, a new algorithm for fast discovery of Sequential Patterns. The existing solutions to this problem make repeated database scans, and use complex hash structures which have poor locality. SPADE utilizes combinatorial properties to decompose the original
An efficient algorithm for discovering frequent subgraphs
- IEEE Transactions on Knowledge and Data Engineering
, 2002
"... Abstract — Over the years, frequent itemset discovery algorithms have been used to find interesting patterns in various application areas. However, as data mining techniques are being increasingly applied to non-traditional domains, existing frequent pattern discovery approach cannot be used. This i ..."
Abstract
-
Cited by 120 (9 self)
- Add to MetaCart
Abstract — Over the years, frequent itemset discovery algorithms have been used to find interesting patterns in various application areas. However, as data mining techniques are being increasingly applied to non-traditional domains, existing frequent pattern discovery approach cannot be used
Results 1 - 10
of
150,407