Results 11 -
12 of
12
Counter Automata, Fixpoints and Additive Theories
- in « Theoretical Computer Science
, 1999
"... We consider finite automata equipped with finitely many registers (or counters). Each transition can be fired only if the associated formula, the guard is satisfied by the current register values. Then the transition updates the registers and the control moves to a new state. In our framework, the g ..."
Abstract
-
Cited by 1 (0 self)
- Add to MetaCart
We consider finite automata equipped with finitely many registers (or counters). Each transition can be fired only if the associated formula, the guard is satisfied by the current register values. Then the transition updates the registers and the control moves to a new state. In our framework, the guards are conjunctions of atomic constraints y i #y j + c i;j where y i is either x 0 i or x i , the values of the counter i respectively after and before the transition, and # is any relational symbol in f=; ; ; ?; !g. We show that the binary relation between the registers values, which is defined by a counter automaton whose control is flat (no nested loops), is definable in the additive theory of N (or Z or Q or R depending on the type of the counters). In particular, we show that adding a fixed point to the above guards, we stay within Presburger arithmetic (resp. additive theory of Z, Q, R). We actually prove a slightly more general result: the number of transition steps can be a ...
Acquisitions and Acquisitions et Bibiiographi Services services bibliographiques
"... paper or electronic formats. The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts fiom it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant a la Bibliothèque n ..."
Abstract
- Add to MetaCart
paper or electronic formats. The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts fiom it may be printed or otherwise reproduced without the author's permission. L'auteur a accordé une licence non exclusive permettant a la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfichelfilm, de reproduction sur papier ou sur format électronique. L'auteur conserve la propriéte du droit d'auteur qui protège cette thèse. Ni la thése ni des extraits substantiels de celle-ci ne doivent être imprimes ou autrement reproduits sans son autorisation,