Results 1  10
of
250,444
Formulation symmetries in circle packing
"... The performance of BranchandBound algorithms is severely impaired by the presence of symmetric optima in a given problem. We describe a method for the automatic detection of formulation symmetries in MINLP instances. A software implementation of this method is used to conjecture the group structur ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
The performance of BranchandBound algorithms is severely impaired by the presence of symmetric optima in a given problem. We describe a method for the automatic detection of formulation symmetries in MINLP instances. A software implementation of this method is used to conjecture the group
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations
 Journal of Computational Physics
, 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract

Cited by 1183 (64 self)
 Add to MetaCart
We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble HamiltonJacobi equations with parabolic righthandsides, by using techniques from the hyperbolic conservation laws. Nonoscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be also used for more general HamiltonJacobitype problems. We demonstrate our algorithms by computing the solution to a variety of surface motion problems. 1
The Stable Model Semantics For Logic Programming
, 1988
"... We propose a new declarative semantics for logic programs with negation. Its formulation is quite simple; at the same time, it is more general than the iterated fixed point semantics for stratied programs, and is applicable to some useful programs that are not stratified. ..."
Abstract

Cited by 1831 (66 self)
 Add to MetaCart
We propose a new declarative semantics for logic programs with negation. Its formulation is quite simple; at the same time, it is more general than the iterated fixed point semantics for stratied programs, and is applicable to some useful programs that are not stratified.
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
ofGaussians model (for multimodal distributions). These probability densities are then used to formulate a maximumlikelihood estimation framework for visual search and target detection for automatic object recognition and coding. Our learning technique is applied to the probabilistic visual modeling, detection
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 973 (4 self)
 Add to MetaCart
squares problem for three or more points. Currently various empirical, graphical, and numerical iterative methods are in use. Derivation of the solution is simplified by use of unit quaternions to represent rotation. I emphasize a symmetry property that a solution to this problem ought to possess. The best
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 826 (88 self)
 Add to MetaCart
), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm
Superconformal field theory on threebranes at a CalabiYau singularity
 Nucl. Phys. B
, 1998
"... Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that ..."
Abstract

Cited by 690 (37 self)
 Add to MetaCart
Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that string theory on AdS5 × X5 can be described by a certain N = 1 supersymmetric gauge theory which we describe in detail.
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theory, cosmology, particle physics, astrophysics and condensed matter physics. No details are given, but references are provided to guide the interested reader to the literature. The present state of knowledge is summarized in a list of 35 key results on topics including the hamiltonian and path integral quantizations, coupling to matter, extensions to supergravity and higher dimensional theories, as well as applications to black holes, cosmology and Plank scale phenomenology. We describe the near term prospects for observational tests of quantum theories of gravity and the expectations that loop quantum gravity may provide predictions for their outcomes. Finally, we provide answers to frequently asked questions and a list of key open problems.
Algorithms for Scalable Synchronization on SharedMemory Multiprocessors
 ACM Transactions on Computer Systems
, 1991
"... Busywait techniques are heavily used for mutual exclusion and barrier synchronization in sharedmemory parallel programs. Unfortunately, typical implementations of busywaiting tend to produce large amounts of memory and interconnect contention, introducing performance bottlenecks that become marke ..."
Abstract

Cited by 567 (32 self)
 Add to MetaCart
Busywait techniques are heavily used for mutual exclusion and barrier synchronization in sharedmemory parallel programs. Unfortunately, typical implementations of busywaiting tend to produce large amounts of memory and interconnect contention, introducing performance bottlenecks that become markedly more pronounced as applications scale. We argue that this problem is not fundamental, and that one can in fact construct busywait synchronization algorithms that induce no memory or interconnect contention. The key to these algorithms is for every processor to spin on separate locallyaccessible ag variables, and for some other processor to terminate the spin with a single remote write operation at an appropriate time. Flag variables may be locallyaccessible as a result of coherent caching, or by virtue of allocation in the local portion of physically distributed shared memory. We present a new scalable algorithm for spin locks that generates O(1) remote references per lock acquisition, independent of the number of processors attempting to acquire the lock. Our algorithm provides reasonable latency in the absence of contention, requires only a constant amount of space per lock, and requires no hardware support other than
Results 1  10
of
250,444