Results 1 - 10
of
681,997
The Design and Use of Steerable Filters
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1991
"... Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters of ..."
Abstract
-
Cited by 1079 (11 self)
- Add to MetaCart
Oriented filters are useful in many early vision and image processing tasks. One often needs to apply the same filter, rotated to different angles under adaptive control, or wishes to calculate the filter response at various orientations. We present an efficient architecture to synthesize filters
NewsWeeder: Learning to Filter Netnews
- in Proceedings of the 12th International Machine Learning Conference (ML95
, 1995
"... A significant problem in many information filtering systems is the dependence on the user for the creation and maintenance of a user profile, which describes the user's interests. NewsWeeder is a netnews-filtering system that addresses this problem by letting the user rate his or her interest l ..."
Abstract
-
Cited by 555 (0 self)
- Add to MetaCart
A significant problem in many information filtering systems is the dependence on the user for the creation and maintenance of a user profile, which describes the user's interests. NewsWeeder is a netnews-filtering system that addresses this problem by letting the user rate his or her interest
Evaluating collaborative filtering recommender systems
- ACM TRANSACTIONS ON INFORMATION SYSTEMS
, 2004
"... ..."
A New Extension of the Kalman Filter to Nonlinear Systems
, 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract
-
Cited by 747 (6 self)
- Add to MetaCart
The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
- STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is develop ..."
Abstract
-
Cited by 1032 (76 self)
- Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework
Empirical Analysis of Predictive Algorithm for Collaborative Filtering
- Proceedings of the 14 th Conference on Uncertainty in Artificial Intelligence
, 1998
"... 1 ..."
Item-based Collaborative Filtering Recommendation Algorithms
- PROC. 10TH INTERNATIONAL CONFERENCE ON THE WORLD WIDE WEB
, 2001
"... ..."
Social Information Filtering: Algorithms for Automating "Word of Mouth"
, 1995
"... This paper describes a technique for making personalized recommendations from any type of database to a user based on similarities between the interest profile of that user and those of other users. In particular, we discuss the implementation of a networked system called Ringo, which makes personal ..."
Abstract
-
Cited by 1145 (21 self)
- Add to MetaCart
personalized recommendations for music albums and artists. Ringo's database of users and artists grows dynamically as more people use the system and enter more information. Four different algorithms for making recommendations by using social information filtering were tested and compared. We present
The Ensemble Kalman Filter: theoretical formulation And Practical Implementation
, 2003
"... The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the ..."
Abstract
-
Cited by 482 (4 self)
- Add to MetaCart
The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews
MEASUREMENT TECHNIQUE: GRAVIMETRIC (FILTER WEIGHT)
, 1994
"... NIOSH: 3.5 mg/m3 (in presence of PAHs: carcinogen/PAHs to 0.1 mg/m3, cyclohexane extractable fraction) ACGIH: 3.5 mg/m3 PROPERTIES: solid; may contain polynuclear aromatic hydrocarbons (PAH) ..."
Abstract
- Add to MetaCart
NIOSH: 3.5 mg/m3 (in presence of PAHs: carcinogen/PAHs to 0.1 mg/m3, cyclohexane extractable fraction) ACGIH: 3.5 mg/m3 PROPERTIES: solid; may contain polynuclear aromatic hydrocarbons (PAH)
Results 1 - 10
of
681,997