• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 34,961
Next 10 →

Inducing Features of Random Fields

by Stephen Della Pietra, Vincent Della Pietra, John Lafferty - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract - Cited by 670 (10 self) - Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing

The structure and function of complex networks

by M. E. J. Newman - SIAM REVIEW , 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract - Cited by 2600 (7 self) - Add to MetaCart
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field

Learning in graphical models

by Michael I. Jordan - STATISTICAL SCIENCE , 2004
"... Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve large-scale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology for ..."
Abstract - Cited by 806 (10 self) - Add to MetaCart
Statistical applications in fields such as bioinformatics, information retrieval, speech processing, image processing and communications often involve large-scale models in which thousands or millions of random variables are linked in complex ways. Graphical models provide a general methodology

Graphical models, exponential families, and variational inference

by Martin J. Wainwright, Michael I. Jordan , 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract - Cited by 819 (28 self) - Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical

Statistical pattern recognition: A review

by Anil K. Jain, Robert P. W. Duin, Jianchang Mao - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract - Cited by 1035 (30 self) - Add to MetaCart
, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved

Homological Algebra of Mirror Symmetry

by Maxim Kontsevich - in Proceedings of the International Congress of Mathematicians , 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3-dimensional Calabi-Yau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract - Cited by 523 (3 self) - Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3-dimensional Calabi-Yau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual

Real-Time Obstacle Avoidance for Manipulators and Mobile Robots

by Oussama Khatib - INT. JOUR OF ROBOTIC RESEARCH , 1986
"... This paper presents a unique real-time obstacle avoidance approach for manipulators and mobile robots based on the artificial potential field concept. Collision avoidance, tradi-tionally considered a high level planning problem, can be effectively distributed between different levels of control, al- ..."
Abstract - Cited by 1345 (28 self) - Add to MetaCart
-lowing real-time robot operations in a complex environment. This method has been extended to moving obstacles by using a time-varying artificial patential field. We have applied this obstacle avoidance scheme to robot arm mechanisms and have used a new approach to the general problem of real-time manipulator

Efficient belief propagation for early vision

by Pedro F. Felzenszwalb, Daniel P. Huttenlocher - In CVPR , 2004
"... Markov random field models provide a robust and unified framework for early vision problems such as stereo, optical flow and image restoration. Inference algorithms based on graph cuts and belief propagation yield accurate results, but despite recent advances are often still too slow for practical u ..."
Abstract - Cited by 515 (8 self) - Add to MetaCart
Markov random field models provide a robust and unified framework for early vision problems such as stereo, optical flow and image restoration. Inference algorithms based on graph cuts and belief propagation yield accurate results, but despite recent advances are often still too slow for practical

How Iris Recognition Works

by John Daugman , 2003
"... Algorithms developed by the author for recogniz-ing persons by their iris patterns have now been tested in six field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statis-tical independence on iris phase st ..."
Abstract - Cited by 509 (4 self) - Add to MetaCart
Algorithms developed by the author for recogniz-ing persons by their iris patterns have now been tested in six field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statis-tical independence on iris phase

Gradient-based learning applied to document recognition

by Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner - Proceedings of the IEEE , 1998
"... Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify hi ..."
Abstract - Cited by 1533 (84 self) - Add to MetaCart
Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify
Next 10 →
Results 1 - 10 of 34,961
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University