Results 1  10
of
2,001,361
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
numerical properties. Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugate
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
, 2001
"... Variable selection is fundamental to highdimensional statistical modeling, including nonparametric regression. Many approaches in use are stepwise selection procedures, which can be computationally expensive and ignore stochastic errors in the variable selection process. In this article, penalized ..."
Abstract

Cited by 914 (61 self)
 Add to MetaCart
that the newly proposed methods compare favorably with other variable selection techniques. Furthermore, the standard error formulas are tested to be accurate enough for practical applications.
Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of nalkanes
 J. Comput. Phys
, 1977
"... A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method ..."
Abstract

Cited by 682 (6 self)
 Add to MetaCart
A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query
Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series Tests, With an Application to the PPP Hypothesis; New Results. Working paper
, 1997
"... We examine properties of residualbased tests for the null of no cointegration for dynamic panels in which both the shortrun dynamics and the longrun slope coefficients are permitted to be heterogeneous across individual members of the panel+ The tests also allow for individual heterogeneous fixed ..."
Abstract

Cited by 499 (13 self)
 Add to MetaCart
We examine properties of residualbased tests for the null of no cointegration for dynamic panels in which both the shortrun dynamics and the longrun slope coefficients are permitted to be heterogeneous across individual members of the panel+ The tests also allow for individual heterogeneous
A LongMemory Property of Stock Market Returns and a New Model
 Journal of Empirical Finance
, 1993
"... A ‘long memory ’ property of stock market returns is investigated in this paper. It is found that not only there is substantially more correlation between absolute returns than returns themselves, but the power transformation of the absolute return lrfl ” also has quite high autocorrelation for lo ..."
Abstract

Cited by 606 (21 self)
 Add to MetaCart
A ‘long memory ’ property of stock market returns is investigated in this paper. It is found that not only there is substantially more correlation between absolute returns than returns themselves, but the power transformation of the absolute return lrfl ” also has quite high autocorrelation
The empirical case for two systems of reasoning
, 1996
"... Distinctions have been proposed between systems of reasoning for centuries. This article distills properties shared by many of these distinctions and characterizes the resulting systems in light of recent findings and theoretical developments. One system is associative because its computations ref ..."
Abstract

Cited by 631 (4 self)
 Add to MetaCart
Distinctions have been proposed between systems of reasoning for centuries. This article distills properties shared by many of these distinctions and characterizes the resulting systems in light of recent findings and theoretical developments. One system is associative because its computations
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
 J. COMP. PHYS
, 1981
"... Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution ..."
Abstract

Cited by 959 (2 self)
 Add to MetaCart
Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null
Results 1  10
of
2,001,361