Results 1  10
of
998,065
FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem
 In Proceedings of the AAAI National Conference on Artificial Intelligence
, 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filterbase ..."
Abstract

Cited by 588 (10 self)
 Add to MetaCart
based algorithms, for example, require time quadratic in the number of landmarks to incorporate each sensor observation. This paper presents FastSLAM, an algorithm that recursively estimates the full posterior distribution over robot pose and landmark locations, yet scales logarithmically with the number
Fast Effective Rule Induction
, 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract

Cited by 1257 (21 self)
 Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.
A Fast Algorithm for Particle Simulations
, 1987
"... this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions a ..."
Abstract

Cited by 1145 (19 self)
 Add to MetaCart
this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions are Coulombic or gravitational in nature. For a the form system of N particles, an amount of work of the order O(N 2 ) has traditionally been required to evaluate all pairwise interactions, un F5F far 1 (F near 1F external ), less some approximation or truncation method is used. The algorithm of the present paper requires an amount of work proportional to N to evaluate all interactions to within roundoff error, making it where F near (when present) is a rapidly decaying potential con
Fast Solution Methods in Electromagnetics
, 1997
"... Various methods for efficiently solving electromagnetic problems are presented. Electromagnetic scattering problems can be roughly classified into surface and volume problems, while fast methods are either differential or integral equation based. The resultant systems of linear equations are either ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
Various methods for efficiently solving electromagnetic problems are presented. Electromagnetic scattering problems can be roughly classified into surface and volume problems, while fast methods are either differential or integral equation based. The resultant systems of linear equations are either
A fast iterative shrinkagethresholding algorithm with application to . . .
, 2009
"... We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract

Cited by 1055 (8 self)
 Add to MetaCart
We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast
Fast Planning Through Planning Graph Analysis
 ARTIFICIAL INTELLIGENCE
, 1995
"... We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid pla ..."
Abstract

Cited by 1165 (3 self)
 Add to MetaCart
We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid plan exists. We provide empirical evidence in favor of this approach, showing that Graphplan outperforms the totalorder planner, Prodigy, and the partialorder planner, UCPOP, on a variety of interesting natural and artificial planning problems. We also give empirical evidence that the plans produced by Graphplan are quite sensible. Since searches made by this approach are fundamentally different from the searches of other common planning methods, they provide a new perspective on the planning problem.
A Fast Quantum Mechanical Algorithm for Database Search
 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract

Cited by 1126 (10 self)
 Add to MetaCart
Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only steps. The algorithm is within a small constant factor of the fastest possible quantum mechanical algorithm.
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently  those with shortrange forces where the neighbors of each atom change rapidly. They can be implemented on any distributedmemory parallel machine which allows for messagepassing of data between independently executing processors. The algorithms are tested on a standard LennardJones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers  the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray YMP and C90 algorithm shows that the current generation of parallel machines is competitive with conventi...
A Fast Marching Level Set Method for Monotonically Advancing Fronts
 PROC. NAT. ACAD. SCI
, 1995
"... We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential eq ..."
Abstract

Cited by 617 (22 self)
 Add to MetaCart
describe a particular case of such methods for interfaces whose speed depends only on local position. The technique works by coupling work on entropy conditions for interface motion, the theory of viscosity solutions for HamiltonJacobi equations and fast adaptive narrow band level set methods
Results 1  10
of
998,065