Results 1  10
of
938
The Stable Model Semantics For Logic Programming
, 1988
"... We propose a new declarative semantics for logic programs with negation. Its formulation is quite simple; at the same time, it is more general than the iterated fixed point semantics for stratied programs, and is applicable to some useful programs that are not stratified. ..."
Abstract

Cited by 1847 (63 self)
 Add to MetaCart
We propose a new declarative semantics for logic programs with negation. Its formulation is quite simple; at the same time, it is more general than the iterated fixed point semantics for stratied programs, and is applicable to some useful programs that are not stratified.
Bilattices and the Semantics of Logic Programming
, 1989
"... Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics, and on prob ..."
Abstract

Cited by 446 (13 self)
 Add to MetaCart
, and on probabilistic valued logic. A fixed point semantics is developed for logic programming, allowing any bilattice as the space of truth values. The mathematics is little more complex than in the classical twovalued setting, but the result provides a natural semantics for distributed logic programs, including
Monopolistic competition and optimum product diversity. The American Economic Review,
, 1977
"... The basic issue concerning production in welfare economics is whether a market solution will yield the socially optimum kinds and quantities of commodities. It is well known that problems can arise for three broad reasons: distributive justice; external effects; and scale economies. This paper is c ..."
Abstract

Cited by 1911 (5 self)
 Add to MetaCart
, resources can be saved by producing fewer goods and larger quantities of each. However, this leaves less variety, which entails some welfare loss. It is easy and probably not too unrealistic to model scale economies by supposing that each potential commodity involves some fixed setup cost and has a
Stratified and Threevalued Logic Programming Semantics
, 1988
"... The familiar fixed point semantics for Horn clause programs gives both smallest and biggest fixed points fundamental roles. We show how to extend this idea to the family of stratified logic programs, producing a semantics we call weak stratified, that is compatible with but not the same as the c ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
The familiar fixed point semantics for Horn clause programs gives both smallest and biggest fixed points fundamental roles. We show how to extend this idea to the family of stratified logic programs, producing a semantics we call weak stratified, that is compatible with but not the same
Stratified, Weak Stratified, and Threevalued Semantics
"... We investigate the relationship between threevalued Kripke/Kleene semantics and stratified semantics for stratifiable logic programs. We first show these are compatible, in the sense that if the threevalued semantics assigns a classical truth value, the stratified approach will assign the same ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
value. Next, the familiar fixed point semantics for pure Horn clause programs gives both smallest and biggest fixed points fundamental roles. We show how to extend this idea to the family of stratifiable logic programs, producing a semantics we call weak stratified. Finally, we show weak stratified
Semantic Domains
, 1990
"... this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of highertype fu ..."
Abstract

Cited by 166 (7 self)
 Add to MetaCart
this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of higher
PolySet Theory
 http://www.rbjones.com/rbjpub/pp/doc/t020.pdf. p011.tex; 25/01/2010; 13:13; p.12 13
"... This document is concerned with the specification of an interpretation of the first order language of set theory. The purpose of this is to provide an ontological basis for foundation systems suitable for the formal derivation of mathematics. The ontology is to include the pure wellfounded sets of ..."
Abstract

Cited by 259 (2 self)
 Add to MetaCart
, the definitions of these is not wellfounded, and special measures are required to obtain a fixed point for the defining functional. These include choice of a suitable boolean algebra of truth values for
Every Logic Program Has a Natural Stratification And an Iterated Least Fixed Point Model (Extended Abstract)
, 1989
"... 1 Introduction The perfect model semantics [ABW88, VG89b, Prz88a, Prz89b] provides an attractive alternative to the traditionally used semantics of logic programs based on Clark's completion of the program [Cla78, Llo84, Fit85, Kun87]. Perfect models are minimal models of the program, which ca ..."
Abstract

Cited by 156 (13 self)
 Add to MetaCart
can be equivalently described as iterated least fixed points of natural operators [ABW88, VG89b], as iterated least models of the program [ABW88, VG89b] or as preferred models with respect to a natural priority relation [Prz88a, Prz89b]. As a result, the perfect model semantics is not only very
An Inflationary Fixed Point in XQuery
 IN PROCEEDINGS OF ICDE
, 2008
"... We introduce a controlled form of recursion in XQuery, inflationary fixed points, familiar in the context of relational databases. This imposes restrictions on the expressible types of recursion, but we show that inflationary fixed points nevertheless are sufficiently versatile to capture a wide ran ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
We introduce a controlled form of recursion in XQuery, inflationary fixed points, familiar in the context of relational databases. This imposes restrictions on the expressible types of recursion, but we show that inflationary fixed points nevertheless are sufficiently versatile to capture a wide
A Denotational Semantics of Inheritance
, 1989
"... This thesis develops a semantic model of inheritance and investigates its applications for the analysis and design of programming languages. Inheritance is a mechanism for incremental programming in the presence of selfreference. This interpretation of inheritance is formalized using traditional te ..."
Abstract

Cited by 146 (8 self)
 Add to MetaCart
techniques of fixedpoint theory, resulting in a compositional model of inheritance that is directly applicable to objectoriented languages. Novel applications of inheritance revealed by the model are illustrated to show that inheritance has wider significance beyond objectoriented class inheritance
Results 1  10
of
938