• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 215,428
Next 10 →

Query Expansion Using Local and Global Document Analysis

by Jinxi Xu, W. Bruce Croft - In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval , 1996
"... Automatic query expansion has long been suggested as a technique for dealing with the fundamental issue of word mismatch in information retrieval. A number of approaches to expansion have been studied and, more recently, attention has focused on techniques that analyze the corpus to discover word re ..."
Abstract - Cited by 610 (24 self) - Add to MetaCart
relationships (global techniques) and those that analyze documents retrieved by the initial query ( local feedback). In this paper, we compare the effectiveness of these approaches and show that, although global analysis has some advantages, local analysis is generally more effective. We also show that using

Locally weighted learning

by Christopher G. Atkeson, Andrew W. Moore , Stefan Schaal - ARTIFICIAL INTELLIGENCE REVIEW , 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract - Cited by 599 (51 self) - Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias

Learning with local and global consistency.

by Dengyong Zhou , Olivier Bousquet , Thomas Navin Lal , Jason Weston , Bernhard Schölkopf - In NIPS, , 2003
"... Abstract We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intr ..."
Abstract - Cited by 673 (21 self) - Add to MetaCart
to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

A PERFORMANCE EVALUATION OF LOCAL DESCRIPTORS

by Krystian Mikolajczyk, Cordelia Schmid , 2005
"... In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their perfo ..."
Abstract - Cited by 1783 (51 self) - Add to MetaCart
In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how

LOF: Identifying density-based local outliers

by Markus M Breunig , Hans-Peter Kriegel , Raymond T Ng , Jörg Sander - MOD , 2000
"... For many KDD applications, such as detecting criminal activities in E-commerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for ..."
Abstract - Cited by 516 (13 self) - Add to MetaCart
that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier. This degree is called the local outlier factor (LOF) of an object. It is local in that the degree depends on how isolated the object is with respect to the surrounding neighborhood. We give a detailed formal

Object Recognition from Local Scale-Invariant Features

by David G. Lowe
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in ..."
Abstract - Cited by 2739 (13 self) - Add to MetaCart
An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons

Recognizing human actions: A local SVM approach

by Christian Schüldt, Ivan Laptev, Barbara Caputo - In ICPR , 2004
"... Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space-ti ..."
Abstract - Cited by 758 (20 self) - Add to MetaCart
Local space-time features capture local events in video and can be adapted to the size, the frequency and the velocity of moving patterns. In this paper we demonstrate how such features can be used for recognizing complex motion patterns. We construct video representations in terms of local space

Learning to detect natural image boundaries using local brightness, color, and texture cues

by David R. Martin, Charless C. Fowlkes, Jitendra Malik - PAMI , 2004
"... The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these fe ..."
Abstract - Cited by 625 (18 self) - Add to MetaCart
The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from

Incorporating non-local information into information extraction systems by Gibbs sampling

by Jenny Rose Finkel, Trond Grenager, Christopher Manning - IN ACL , 2005
"... Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, ..."
Abstract - Cited by 730 (25 self) - Add to MetaCart
Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling

PCA-SIFT: A more distinctive representation for local image descriptors

by Yan Ke, Rahul Sukthankar , 2004
"... Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deforma ..."
Abstract - Cited by 591 (6 self) - Add to MetaCart
deformations. This paper examines (and improves upon) the local image descriptor used by SIFT. Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point's neighborhood; however, instead of using SIFT's smoothed weighted histograms, we apply Principal Components
Next 10 →
Results 1 - 10 of 215,428
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University