Results 1  10
of
18,704
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 800 (23 self)
 Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter
Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification
 Psychological Methods
, 1998
"... This study evaluated the sensitivity of maximum likelihood (ML), generalized least squares (GLS), and asymptotic distributionfree (ADF)based fit indices to model misspecification, under conditions that varied sample size and distribution. The effect of violating assumptions of asymptotic robustn ..."
Abstract

Cited by 543 (0 self)
 Add to MetaCart
robustness theory also was examined. Standardized rootmeansquare residual (SRMR) was the most sensitive index to models with misspecified factor covariance(s), and TuckerLewis Index (1973; TLI), Bollen's fit index (1989; BL89), relative noncentrality index (RNI), comparative fit index (CFI
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 653 (21 self)
 Add to MetaCart
numerical properties. Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugate
How much should we trust differencesindifferences estimates?
, 2003
"... Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data on femal ..."
Abstract

Cited by 828 (1 self)
 Add to MetaCart
Most papers that employ DifferencesinDifferences estimation (DD) use many years of data and focus on serially correlated outcomes but ignore that the resulting standard errors are inconsistent. To illustrate the severity of this issue, we randomly generate placebo laws in statelevel data
An iterative method for the solution of the eigenvalue problem of linear differential and integral
, 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract

Cited by 537 (0 self)
 Add to MetaCart
The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through
Least angle regression
, 2004
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1326 (37 self)
 Add to MetaCart
The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract

Cited by 693 (4 self)
 Add to MetaCart
) finding the parameters of a hidden Markov model (HMM) (i.e., the BaumWelch algorithm) for both discrete and Gaussian mixture observation models. We derive the update equations in fairly explicit detail but we do not prove any convergence properties. We try to emphasize intuition rather than mathematical
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 601 (26 self)
 Add to MetaCart
ARCH (GARCH) models [see Bollerslev, Chou, and Kroner (1992) for a survey of ARCH modeling], both the mean and logvolatility equations have separate error terms. The ease of evaluating the ARCH likelihood function and the ability of the ARCH specification to accommodate the timevarying volatility
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1399 (16 self)
 Add to MetaCart
This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible
Results 1  10
of
18,704