Results 1 - 10
of
8,520
Maximum likelihood from incomplete data via the EM algorithm
- JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract
-
Cited by 11972 (17 self)
- Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a max-imum likelihood ..."
Abstract
-
Cited by 885 (21 self)
- Add to MetaCart
problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parame-ters of the architecture. We also develop an on-line learning algorithm in which the pa-rameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
Consensus and cooperation in networked multi-agent systems
- Proceedings of the IEEE
, 2007
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An ove ..."
Abstract
-
Cited by 807 (4 self)
- Add to MetaCart
Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
- Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract
-
Cited by 993 (18 self)
- Add to MetaCart
. The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect
Consensus Problems in Networks of Agents with Switching Topology and Time-Delays
, 2003
"... In this paper, we discuss consensus problems for a network of dynamic agents with fixed and switching topologies. We analyze three cases: i) networks with switching topology and no time-delays, ii) networks with fixed topology and communication time-delays, and iii) max-consensus problems (or leader ..."
Abstract
-
Cited by 1112 (21 self)
- Add to MetaCart
leader determination) for groups of discrete-time agents. In each case, we introduce a linear/nonlinear consensus protocol and provide convergence analysis for the proposed distributed algorithm. Moreover, we establish a connection between the Fiedler eigenvalue of the information flow in a network (i
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximum-likelihood parameter estimation problem and how the Expectation-form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract
-
Cited by 693 (4 self)
- Add to MetaCart
We describe the maximum-likelihood parameter estimation problem and how the Expectation-form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2
Text Classification from Labeled and Unlabeled Documents using EM
- MACHINE LEARNING
, 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract
-
Cited by 1033 (15 self)
- Add to MetaCart
quantities of unlabeled documents are readily available. We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of Expectation-Maximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents
The geometry of graphs and some of its algorithmic applications
- COMBINATORICA
, 1995
"... In this paper we explore some implications of viewing graphs as geometric objects. This approach offers a new perspective on a number of graph-theoretic and algorithmic problems. There are several ways to model graphs geometrically and our main concern here is with geometric representations that res ..."
Abstract
-
Cited by 524 (19 self)
- Add to MetaCart
their geometric images. In this paper we develop efficient algorithms for em-bedding graphs low-dimensionally with a small distortion. Further algorithmic applications include: 0 A simple, unified approach to a number of prob-lems on multicommodity flows, including the Leighton-Rae Theorem [29] and some of its ex
Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
- IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogram-based model, the FM has an intrinsic limi ..."
Abstract
-
Cited by 639 (15 self)
- Add to MetaCart
methods are limited to using MRF as a general prior in an FM model-based approach. To fit the HMRF model, an EM algorithm is used. We show that by incorporating both the HMRF model and the EM algorithm into a HMRF-EM framework, an accurate and robust segmentation can be achieved. More importantly
Adaptive Constraint Satisfaction
- WORKSHOP OF THE UK PLANNING AND SCHEDULING
, 1996
"... Many different approaches have been applied to constraint satisfaction. These range from complete backtracking algorithms to sophisticated distributed configurations. However, most research effort in the field of constraint satisfaction algorithms has concentrated on the use of a single algorithm fo ..."
Abstract
-
Cited by 952 (43 self)
- Add to MetaCart
for solving all problems. At the same time, a consensus appears to have developed to the effect that it is unlikely that any single algorithm is always the best choice for all classes of problem. In this paper we argue that an adaptive approach should play an important part in constraint satisfaction
Results 1 - 10
of
8,520