Results 1 - 10
of
5,790
Maximum likelihood from incomplete data via the EM algorithm
- JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract
-
Cited by 11972 (17 self)
- Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a tree-structured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a max-imum likelihood ..."
Abstract
-
Cited by 885 (21 self)
- Add to MetaCart
problem; in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parame-ters of the architecture. We also develop an on-line learning algorithm in which the pa-rameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
- Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract
-
Cited by 993 (18 self)
- Add to MetaCart
. The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect
The Bayesian Structural EM Algorithm
, 1998
"... In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a belief network from incomplete data---that is, in the presence of missing values or hidden variables. In a recent paper, I in ..."
Abstract
-
Cited by 260 (13 self)
- Add to MetaCart
introduced an algorithm called Structural EM that combines the standard Expectation Maximization (EM) algorithm, which optimizes parameters, with structure search for model selection. That algorithm learns networks based on penalized likelihood scores, which include the BIC/MDL score and various
An EM Algorithm for Wavelet-Based Image Restoration
, 2002
"... This paper introduces an expectation-maximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with low-complexity, expressed in terms of the wavelet coecients, taking a ..."
Abstract
-
Cited by 352 (22 self)
- Add to MetaCart
This paper introduces an expectation-maximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with low-complexity, expressed in terms of the wavelet coecients, taking
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximum-likelihood parameter estimation problem and how the Expectation-form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract
-
Cited by 693 (4 self)
- Add to MetaCart
We describe the maximum-likelihood parameter estimation problem and how the Expectation-form of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2
EM Algorithms
, 2011
"... The EM algorithm is not a single algorithm, but a framework for the design of iterative likelihood maximization methods for parameter estimation. Any algorithm based on the EM framework we refer to as an “EM algorithm”. Because there is no inclusive theory that applies to all EM algorithms, the subj ..."
Abstract
- Add to MetaCart
The EM algorithm is not a single algorithm, but a framework for the design of iterative likelihood maximization methods for parameter estimation. Any algorithm based on the EM framework we refer to as an “EM algorithm”. Because there is no inclusive theory that applies to all EM algorithms
EM Algorithms for PCA and SPCA
- in Advances in Neural Information Processing Systems
, 1998
"... I present an expectation-maximization (EM) algorithm for principal component analysis (PCA). The algorithm allows a few eigenvectors and eigenvalues to be extracted from large collections of high dimensional data. It is computationally very efficient in space and time. It also naturally accommodates ..."
Abstract
-
Cited by 146 (1 self)
- Add to MetaCart
I present an expectation-maximization (EM) algorithm for principal component analysis (PCA). The algorithm allows a few eigenvectors and eigenvalues to be extracted from large collections of high dimensional data. It is computationally very efficient in space and time. It also naturally
The EM Algorithm for Mixtures of Factor Analyzers
, 1997
"... Factor analysis, a statistical method for modeling the covariance structure of high dimensional data using a small number of latent variables, can be extended by allowing different local factor models in different regions of the input space. This results in a model which concurrently performs cluste ..."
Abstract
-
Cited by 278 (18 self)
- Add to MetaCart
. In this paper we present an EM learning algorithm for a method which combines one of the basic forms of dime...
The EM algorithm
- Wiley Series in Probability and Statistics: Applied Probability and Statistics, WileyInterscience
, 1997
"... Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche, räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter ..."
Abstract
-
Cited by 18 (2 self)
- Add to MetaCart
Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche, räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter
Results 1 - 10
of
5,790