Results 1  10
of
241,733
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11807 (17 self)
 Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
Hierarchical mixtures of experts and the EM algorithm
, 1993
"... We present a treestructured architecture for supervised learning. The statistical model underlying the architecture is a hierarchical mixture model in which both the mixture coefficients and the mixture components are generalized linear models (GLIM’s). Learning is treated as a maximum likelihood ..."
Abstract

Cited by 875 (21 self)
 Add to MetaCart
problem; in particular, we present an ExpectationMaximization (EM) algorithm for adjusting the parameters of the architecture. We also develop an online learning algorithm in which the parameters are updated incrementally. Comparative simulation results are presented in the robot dynamics domain.
A View Of The Em Algorithm That Justifies Incremental, Sparse, And Other Variants
 Learning in Graphical Models
, 1998
"... . The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect to the d ..."
Abstract

Cited by 988 (18 self)
 Add to MetaCart
. The EM algorithm performs maximum likelihood estimation for data in which some variables are unobserved. We present a function that resembles negative free energy and show that the M step maximizes this function with respect to the model parameters and the E step maximizes it with respect
The Bayesian Structural EM Algorithm
, 1998
"... In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a belief network from incomplete datathat is, in the presence of missing values or hidden variables. In a recent paper, I in ..."
Abstract

Cited by 257 (12 self)
 Add to MetaCart
introduced an algorithm called Structural EM that combines the standard Expectation Maximization (EM) algorithm, which optimizes parameters, with structure search for model selection. That algorithm learns networks based on penalized likelihood scores, which include the BIC/MDL score and various
An EM Algorithm for WaveletBased Image Restoration
, 2002
"... This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking a ..."
Abstract

Cited by 351 (23 self)
 Add to MetaCart
This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking
A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
, 1997
"... We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2) fi ..."
Abstract

Cited by 678 (4 self)
 Add to MetaCart
We describe the maximumlikelihood parameter estimation problem and how the Expectationform of the EM algorithm as it is often given in the literature. We then develop the EM parameter estimation procedure for two applications: 1) finding the parameters of a mixture of Gaussian densities, and 2
EM Algorithms
, 2011
"... The EM algorithm is not a single algorithm, but a framework for the design of iterative likelihood maximization methods for parameter estimation. Any algorithm based on the EM framework we refer to as an “EM algorithm”. Because there is no inclusive theory that applies to all EM algorithms, the subj ..."
Abstract
 Add to MetaCart
The EM algorithm is not a single algorithm, but a framework for the design of iterative likelihood maximization methods for parameter estimation. Any algorithm based on the EM framework we refer to as an “EM algorithm”. Because there is no inclusive theory that applies to all EM algorithms
The EM Algorithm for Mixtures of Factor Analyzers
, 1997
"... Factor analysis, a statistical method for modeling the covariance structure of high dimensional data using a small number of latent variables, can be extended by allowing different local factor models in different regions of the input space. This results in a model which concurrently performs cluste ..."
Abstract

Cited by 282 (19 self)
 Add to MetaCart
. In this paper we present an EM learning algorithm for a method which combines one of the basic forms of dime...
EM Algorithms for PCA and SPCA
 in Advances in Neural Information Processing Systems
, 1998
"... I present an expectationmaximization (EM) algorithm for principal component analysis (PCA). The algorithm allows a few eigenvectors and eigenvalues to be extracted from large collections of high dimensional data. It is computationally very efficient in space and time. It also naturally accommodates ..."
Abstract

Cited by 142 (1 self)
 Add to MetaCart
I present an expectationmaximization (EM) algorithm for principal component analysis (PCA). The algorithm allows a few eigenvectors and eigenvalues to be extracted from large collections of high dimensional data. It is computationally very efficient in space and time. It also naturally
The EM algorithm
 Wiley Series in Probability and Statistics: Applied Probability and Statistics, WileyInterscience
, 1997
"... Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche, räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche, räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter
Results 1  10
of
241,733