Results 1  10
of
2,696,543
A new practically efficient interior point method for LP
, 2006
"... In this paper we briefly review the importance of LP (linear programming), and Dantzig’s main contributions to OR (Operations Research), mathematics, and computer science. In [11, 3] gravitational methods for LP have been introduced. Several versions exist. The three main versions discussed there us ..."
Abstract

Cited by 9 (7 self)
 Add to MetaCart
like an interior point method [8,20, 21]. To guarantee that the ball has the largest possible radius, it uses a new centering strategy that moves any interior feasible solution x 0 to the center of the intersection of the feasible region with the objective hyperplane through x 0, before beginning
An interiorpoint method for largescale l1regularized logistic regression
 Journal of Machine Learning Research
, 2007
"... Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand ..."
Abstract

Cited by 284 (8 self)
 Add to MetaCart
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 603 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex
InteriorPoint Methods for Magnitude Filter Design
 Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
, 2001
"... We describe efficient interiorpoint methods for the design of filters with constraints on the magnitude spectrum, for example, piecewiseconstant upper and lower bounds, and arbitrary phase. Several researchers have observed that problems of this type can be solved via convex optimization and spect ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
We describe efficient interiorpoint methods for the design of filters with constraints on the magnitude spectrum, for example, piecewiseconstant upper and lower bounds, and arbitrary phase. Several researchers have observed that problems of this type can be solved via convex optimization
An InteriorPoint Method for Semidefinite Programming
, 2005
"... We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other appli ..."
Abstract

Cited by 255 (18 self)
 Add to MetaCart
We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other
On the Riemannian geometry defined by selfconcordant barriers and interiorpoint methods
 Found. Comput. Math
"... We consider the Riemannian geometry defined on a convex set by the Hessian of a selfconcordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interiorpoint methods for optimizing a linear function over the intersection of the set with ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
We consider the Riemannian geometry defined on a convex set by the Hessian of a selfconcordant barrier function, and its associated geodesic curves. These provide guidance for the construction of efficient interiorpoint methods for optimizing a linear function over the intersection of the set
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
An InteriorPoint Algorithm For Nonconvex Nonlinear Programming
 COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
, 1997
"... The paper describes an interiorpoint algorithm for nonconvex nonlinear programming which is a direct extension of interiorpoint methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the mer ..."
Abstract

Cited by 193 (14 self)
 Add to MetaCart
The paper describes an interiorpoint algorithm for nonconvex nonlinear programming which is a direct extension of interiorpoint methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction
Interiorpoint methods for optimization
, 2008
"... This article describes the current state of the art of interiorpoint methods (IPMs) for convex, conic, and general nonlinear optimization. We discuss the theory, outline the algorithms, and comment on the applicability of this class of methods, which have revolutionized the field over the last twen ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
This article describes the current state of the art of interiorpoint methods (IPMs) for convex, conic, and general nonlinear optimization. We discuss the theory, outline the algorithms, and comment on the applicability of this class of methods, which have revolutionized the field over the last
PrimalDual InteriorPoint Methods for SelfScaled Cones
 SIAM Journal on Optimization
, 1995
"... In this paper we continue the development of a theoretical foundation for efficient primaldual interiorpoint algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are selfscaled (see [9]). The class of problems under consideration includes li ..."
Abstract

Cited by 207 (12 self)
 Add to MetaCart
In this paper we continue the development of a theoretical foundation for efficient primaldual interiorpoint algorithms for convex programming problems expressed in conic form, when the cone and its associated barrier are selfscaled (see [9]). The class of problems under consideration includes
Results 1  10
of
2,696,543