Results 1  10
of
58,448
Efficient Fully Homomorphic Encryption from (Standard) LWE
 LWE, FOCS 2011, IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, IEEE
, 2011
"... We present a fully homomorphic encryption scheme that is based solely on the (standard) learning with errors (LWE) assumption. Applying known results on LWE, the security of our scheme is based on the worstcase hardness of “short vector problems ” on arbitrary lattices. Our construction improves on ..."
Abstract

Cited by 117 (6 self)
 Add to MetaCart
We present a fully homomorphic encryption scheme that is based solely on the (standard) learning with errors (LWE) assumption. Applying known results on LWE, the security of our scheme is based on the worstcase hardness of “short vector problems ” on arbitrary lattices. Our construction improves
Fully homomorphic encryption using ideal lattices
 In Proc. STOC
, 2009
"... We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation of arbitra ..."
Abstract

Cited by 642 (17 self)
 Add to MetaCart
We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation
Fully homomorphic encryption with relatively small key and ciphertext sizes
 In Public Key Cryptography — PKC ’10, Springer LNCS 6056
, 2010
"... Abstract. We present a fully homomorphic encryption scheme which has both relatively small key and ciphertext size. Our construction follows that of Gentry by producing a fully homomorphic scheme from a “somewhat ” homomorphic scheme. For the somewhat homomorphic scheme the public and private keys c ..."
Abstract

Cited by 115 (9 self)
 Add to MetaCart
consist of two large integers (one of which is shared by both the public and private key) and the ciphertext consists of one large integer. As such, our scheme has smaller message expansion and key size than Gentry’s original scheme. In addition, our proposal allows efficient fully homomorphic encryption
Fully Homomorphic Encryption over the Integers
, 2009
"... We construct a simple fully homomorphic encryption scheme, using only elementary modular arithmetic. We use Gentry’s technique to construct fully homomorphic scheme from a “bootstrappable” somewhat homomorphic scheme. However, instead of using ideal lattices over a polynomial ring, our bootstrappabl ..."
Abstract

Cited by 138 (10 self)
 Add to MetaCart
We construct a simple fully homomorphic encryption scheme, using only elementary modular arithmetic. We use Gentry’s technique to construct fully homomorphic scheme from a “bootstrappable” somewhat homomorphic scheme. However, instead of using ideal lattices over a polynomial ring, our
FULLY HOMOMORPHIC ENCRYPTION FOR MATHEMATICIANS
"... Abstract. We give an introduction to Fully Homomorphic Encryption for mathematicians. Fully Homomorphic Encryption allows untrusted parties to take encrypted data Enc(m1),..., Enc(mt) and any efficiently computable function f, and compute an encryption of f(m1,..., mt), without knowing or learning t ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. We give an introduction to Fully Homomorphic Encryption for mathematicians. Fully Homomorphic Encryption allows untrusted parties to take encrypted data Enc(m1),..., Enc(mt) and any efficiently computable function f, and compute an encryption of f(m1,..., mt), without knowing or learning
Fully homomorphic encryption without bootstrapping
 In Innovations in Theoretical Computer Science
, 2012
"... We present a radically new approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating ar ..."
Abstract

Cited by 91 (14 self)
 Add to MetaCart
We present a radically new approach to fully homomorphic encryption (FHE) that dramatically improves performance and bases security on weaker assumptions. A central conceptual contribution in our work is a new way of constructing leveled fully homomorphic encryption schemes (capable of evaluating
Accelerating Fully Homomorphic Encryption on
"... the first plausible construction of a fully homomorphic encryption (FHE) scheme. FHE allows the evaluation of arbitrary functions directly on encrypted data on untwisted servers. In 2010, Gentry and Halevi presented the first FHE implementation on an IBM x3500 server. However, this implementation re ..."
Abstract
 Add to MetaCart
the first plausible construction of a fully homomorphic encryption (FHE) scheme. FHE allows the evaluation of arbitrary functions directly on encrypted data on untwisted servers. In 2010, Gentry and Halevi presented the first FHE implementation on an IBM x3500 server. However, this implementation
Fully homomorphic encryption with polylog overhead
"... We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for security parameter λ can evaluate any widthΩ(λ) circuit with t gates in time t · ..."
Abstract

Cited by 63 (4 self)
 Add to MetaCart
We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for security parameter λ can evaluate any widthΩ(λ) circuit with t gates in time
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1643 (75 self)
 Add to MetaCart
for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including
Results 1  10
of
58,448