Results 1  10
of
2,732,051
No Free Lunch Theorems for Optimization
, 1997
"... A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of “no free lunch ” (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset by performan ..."
Abstract

Cited by 961 (10 self)
 Add to MetaCart
A framework is developed to explore the connection between effective optimization algorithms and the problems they are solving. A number of “no free lunch ” (NFL) theorems are presented which establish that for any algorithm, any elevated performance over one class of problems is offset
The Cache Performance and Optimizations of Blocked Algorithms
 In Proceedings of the Fourth International Conference on Architectural Support for Programming Languages and Operating Systems
, 1991
"... Blocking is a wellknown optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused. This ..."
Abstract

Cited by 572 (5 self)
 Add to MetaCart
Blocking is a wellknown optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1861 (43 self)
 Add to MetaCart
A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters
Dynamic programming algorithm optimization for spoken word recognition
 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING
, 1978
"... This paper reports on an optimum dynamic programming (DP) based timenormalization algorithm for spoken word recognition. First, a general principle of timenormalization is given using timewarping function. Then, two timenormalized distance definitions, ded symmetric and asymmetric forms, are der ..."
Abstract

Cited by 786 (3 self)
 Add to MetaCart
words in different The effective slope constraint characteristic is qualitatively analyzed, and the optimum slope constraint condition is determined through experiments. The optimized algorithm is then extensively subjected to experimentat comparison with various DPalgorithms, previously applied
Optimal Aggregation Algorithms for Middleware
 IN PODS
, 2001
"... Assume that each object in a database has m grades, or scores, one for each of m attributes. For example, an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted list, which lists each object and its grade under ..."
Abstract

Cited by 714 (4 self)
 Add to MetaCart
must access every object in the database, to find its grade under each attribute. Fagin has given an algorithm (“Fagin’s Algorithm”, or FA) that is much more efficient. For some monotone aggregation functions, FA is optimal with high probability in the worst case. We analyze an elegant and remarkably
Ant algorithms for discrete optimization
 ARTIFICIAL LIFE
, 1999
"... This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic ..."
Abstract

Cited by 490 (42 self)
 Add to MetaCart
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 718 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
A Data Locality Optimizing Algorithm
, 1991
"... This paper proposes an algorithm that improves the locality of a loop nest by transforming the code via interchange, reversal, skewing and tiling. The loop transformation algorithm is based on two concepts: a mathematical formulation of reuse and locality, and a loop transformation theory that unifi ..."
Abstract

Cited by 803 (16 self)
 Add to MetaCart
that unifies the various transforms as unimodular matrix transformations. The algorithm has been implemented in the SUIF (Stanford University Intermediate Format) compiler, and is successful in optimizing codes such as matrix multiplication, successive overrelaxation (SOR), LU decomposition without pivoting
An Overview of Evolutionary Algorithms in Multiobjective Optimization
 Evolutionary Computation
, 1995
"... The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performa ..."
Abstract

Cited by 491 (13 self)
 Add to MetaCart
The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial
Results 1  10
of
2,732,051