• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 148,103
Next 10 →

Sequential Monte Carlo Methods for Dynamic Systems

by Jun S. Liu, Rong Chen - Journal of the American Statistical Association , 1998
"... A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three ..."
Abstract - Cited by 664 (13 self) - Add to MetaCart
A general framework for using Monte Carlo methods in dynamic systems is provided and its wide applications indicated. Under this framework, several currently available techniques are studied and generalized to accommodate more complex features. All of these methods are partial combinations of three

System Dynamics: Systems Thinking and Modeling for a Complex World

by John D. Sterman , 2002
"... ..."
Abstract - Cited by 1338 (13 self) - Add to MetaCart
Abstract not found

Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory

by Reza Olfati-Saber , 2006
"... In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in free-space and presence of multiple obstacles are considered. We present three flocking algorithms: two for free-flocking and one for constrained flocking. A compre ..."
Abstract - Cited by 436 (2 self) - Add to MetaCart
” definition of flocking for particle systems with similarities to Lyapunov stability is given. Several simulation results are provided that demonstrate performing 2-D and 3-D flocking, split/rejoin maneuver, and squeezing maneuver for hundreds of agents using the proposed algorithms.

Scalable molecular dynamics with NAMD.

by James C Phillips , Rosemary Braun , Wei Wang , James Gumbart , Emad Tajkhorshid , Elizabeth Villa , Christophe Chipot , Robert D Skeel , Laxmikant Kalé , Klaus Schulten - J Comput Chem , 2005
"... Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and la ..."
Abstract - Cited by 849 (63 self) - Add to MetaCart
Abstract: NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop

Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating Systems

by Padmanabhan Pillai, Kang G. Shin , 2001
"... In recent years, there has been a rapid and wide spread of nontraditional computing platforms, especially mobile and portable computing devices. As applications become increasingly sophisticated and processing power increases, the most serious limitation on these devices is the available battery lif ..."
Abstract - Cited by 501 (4 self) - Add to MetaCart
life. Dynamic Voltage Scaling (DVS) has been a key technique in exploiting the hardware characteristics of processors to reduce energy dissipation by lowering the supply voltage and operating frequency. The DVS algorithms are shown to be able to make dramatic energy savings while providing

Dynamo: A Transparent Dynamic Optimization System

by Vasanth Bala, Evelyn Duesterwald , Sanjeev Banerjia - ACM SIGPLAN NOTICES , 2000
"... We describe the design and implementation of Dynamo, a software dynamic optimization system that is capable of transparently improving the performance of a native instruction stream as it executes on the processor. The input native instruction stream to Dynamo can be dynamically generated (by a JIT ..."
Abstract - Cited by 479 (2 self) - Add to MetaCart
We describe the design and implementation of Dynamo, a software dynamic optimization system that is capable of transparently improving the performance of a native instruction stream as it executes on the processor. The input native instruction stream to Dynamo can be dynamically generated (by a JIT

Consensus and cooperation in networked multi-agent systems

by Reza Olfati-Saber , J Alex Fax , Richard M Murray , Reza Olfati-Saber , J Alex Fax , Richard M Murray - Proceedings of the IEEE , 2007
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An ove ..."
Abstract - Cited by 807 (4 self) - Add to MetaCart
in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor

Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes

by Jean-paul Ryckaert, Giovanni Ciccotti, Herman J. C. Berendsen - J. Comput. Phys , 1977
"... A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method ..."
Abstract - Cited by 704 (6 self) - Add to MetaCart
A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method

Distortion invariant object recognition in the dynamic link architecture

by Martin Lades, Jan C. Vorbrüggen, Joachim Buhmann, Christoph v. d. Malsburg, Rolf P. Würtz, Wolfgang Konen - IEEE TRANSACTIONS ON COMPUTERS , 1993
"... We present an object recognition system based on the Dynamic Link Architecture, which is an extension to classical Artificial Neural Networks. The Dynamic Link Architecture ex-ploits correlations in the fine-scale temporal structure of cellular signals in order to group neurons dynamically into hig ..."
Abstract - Cited by 637 (80 self) - Add to MetaCart
We present an object recognition system based on the Dynamic Link Architecture, which is an extension to classical Artificial Neural Networks. The Dynamic Link Architecture ex-ploits correlations in the fine-scale temporal structure of cellular signals in order to group neurons dynamically

Fast Parallel Algorithms for Short-Range Molecular Dynamics

by Steve Plimpton - JOURNAL OF COMPUTATIONAL PHYSICS , 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract - Cited by 653 (7 self) - Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
Next 10 →
Results 1 - 10 of 148,103
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University