Results 1  10
of
137,954
Searching dynamic point sets in spaces with bounded doubling dimension
 In The thirtyeighth annual ACM symposium on Theory of computing (STOC
, 2006
"... We present a new data structure that facilitates approximate nearest neighbor searches on a dynamic set of points in a metric space that has a bounded doubling dimension. Our data structure has linear size and supports insertions and deletions in O(log n) time, and finds a (1 + ɛ)approximate neares ..."
Abstract

Cited by 41 (14 self)
 Add to MetaCart
We present a new data structure that facilitates approximate nearest neighbor searches on a dynamic set of points in a metric space that has a bounded doubling dimension. Our data structure has linear size and supports insertions and deletions in O(log n) time, and finds a (1 + ɛ
Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles
"... Abstract. We consider a coloring problem on dynamic, onedimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each colo ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. We consider a coloring problem on dynamic, onedimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each
The Orthant Neighborhood Graph: A Decentralized Spatial Data Structure for Dynamic Point Sets
"... Abstract. This work presents a novel approach for proximity queries in dynamic point sets, a common problem in computer graphics. We introduce the notion of Orthant Neighborhood Graphs, yielding a simple, decentralized spatial data structure based on weak spanners. We present efficient algorithms f ..."
Abstract
 Add to MetaCart
Abstract. This work presents a novel approach for proximity queries in dynamic point sets, a common problem in computer graphics. We introduce the notion of Orthant Neighborhood Graphs, yielding a simple, decentralized spatial data structure based on weak spanners. We present efficient algorithms
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex
Surface reconstruction from unorganized points
 COMPUTER GRAPHICS (SIGGRAPH ’92 PROCEEDINGS)
, 1992
"... We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be know ..."
Abstract

Cited by 815 (8 self)
 Add to MetaCart
We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1�:::�xng IR 3 on or near an unknown manifold M, and produces as output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed
An affine invariant interest point detector
 In Proceedings of the 7th European Conference on Computer Vision
, 2002
"... Abstract. This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape of ..."
Abstract

Cited by 1467 (55 self)
 Add to MetaCart
to affine invariant points. For matching and recognition, the image is characterized by a set of affine invariant points; the affine transformation associated with each point allows the computation of an affine invariant descriptor which is also invariant to affine illumination changes. A quantitative
Pointsto Analysis in Almost Linear Time
, 1996
"... We present an interprocedural flowinsensitive pointsto analysis based on type inference methods with an almost linear time cost complexity. To our knowledge, this is the asymptotically fastest nontrivial interprocedural pointsto analysis algorithm yet described. The algorithm is based on a nons ..."
Abstract

Cited by 595 (3 self)
 Add to MetaCart
standard type system. The type inferred for any variable represents a set of locations and includes a type which in turn represents a set of locations possibly pointed to by the variable. The type inferred for a function variable represents a set of functions it may point to and includes a type signature
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 527 (51 self)
 Add to MetaCart
.g. representative points, arbitrary shaped clusters), but also the intrinsic clustering structure. For medium sized data sets, the clusterordering can be represented graphically and for very large data sets, we introduce an appropriate visualization technique. Both are suitable for interactive exploration
Clustering by passing messages between data points
 Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract

Cited by 696 (8 self)
 Add to MetaCart
if that initial choice is close to a good solution. We devised a method called “affinity propagation,” which takes as input measures of similarity between pairs of data points. Realvalued messages are exchanged between data points until a highquality set of exemplars and corresponding clusters gradually emerges
CURE: An Efficient Clustering Algorithm for Large Data sets
 Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract

Cited by 722 (5 self)
 Add to MetaCart
clustering algorithm called CURE that is more robust to outliers, and identifies clusters having nonspherical shapes and wide variances in size. CURE achieves this by representing each cluster by a certain fixed number of points that are generated by selecting well scattered points from the cluster
Results 1  10
of
137,954