Results 1  10
of
71,182
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties
 J. Alg. Geom
, 1994
"... We consider families F(∆) consisting of complex (n − 1)dimensional projective algebraic compactifications of ∆regular affine hypersurfaces Zf defined by Laurent polynomials f with a fixed ndimensional Newton polyhedron ∆ in ndimensional algebraic torus T = (C ∗ ) n. If the family F(∆) defined by ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
that the properties of this duality coincide with the properties of Mirror Symmetry discovered by physicists for CalabiYau 3folds. Our method allows to construct many new examples of CalabiYau 3folds and new candidates for their mirrors which were previously unknown for physicists. We conjecture that there exists
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its Tduality, and Morita equivalence. We also discuss the D0/D4 system, the relation to Mtheory in DLCQ, and a possible noncommutative version of the sixdimensional (2, 0) theory. 8/99
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Macroscopic strings as heavy quarks in large N gauge theory and Antide Sitter supergravity
 PHYS. J. C22
"... Maldacena has put forward large N correspondence between superconformal field theories on the brane and antide Sitter supergravity in spacetime. We study some aspects of the correspondence between N = 4 superconformal gauge theory on D3brane and maximal supergravity on adS5 × S5 by introducing mac ..."
Abstract

Cited by 510 (1 self)
 Add to MetaCart
and recoil of heavy quark thereof, and of heavy baryon via of Nprong string junction. Throughout comparisons of the correspondence, we emphasize crucial role played by ‘geometric duality ’ between coordinates perpendicular to D3brane and parallel ones, hinting a possible explanation of emergence
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied
The large N limit of superconformal field theories and supergravity
, 1998
"... We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of AntideSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and ..."
Abstract

Cited by 5673 (21 self)
 Add to MetaCart
We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of AntideSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the superPoincare group). The ’t Hooft limit of 3+1 N = 4 superYangMills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various AntideSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of Mtheory which could be extended to include five or four noncompact dimensions. 1
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear matrix inequality (LMI) problems. A notion of KarushKuhnTucker polynomials is introduced in a global optimality condition. Some illustrative examples are provided. Key words. global optimization, theory of moments and positive polynomials, semidefinite programming AMS subject classifications. 90C22, 90C25 PII. S1052623400366802 1.
Hierarchies from Fluxes in String Compactifications
, 2002
"... Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory a ..."
Abstract

Cited by 724 (33 self)
 Add to MetaCart
Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory and Ftheory compactifications on CalabiYau fourfolds. In each case, the hierarchy of scales is fixed by a choice of RR and NS fluxes in the compact manifold. Our solutions involve compactifications of the KlebanovStrassler gravity dual to a confining N = 1 supersymmetric gauge theory, and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge theory.
Results 1  10
of
71,182