Results 11  20
of
30,259
Constrained Kmeans Clustering with Background Knowledge
 In ICML
, 2001
"... Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed ..."
Abstract

Cited by 488 (9 self)
 Add to MetaCart
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed
Clustering Gene Expression Patterns
, 1999
"... Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the ana ..."
Abstract

Cited by 451 (11 self)
 Add to MetaCart
in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. The corresponding algorithmic problem is to cluster multicondition gene expression patterns. In this paper we describe a novel clustering algorithm that was developed for analysis of gene
On the algorithmic implementation of multiclass kernelbased vector machines
 Journal of Machine Learning Research
"... In this paper we describe the algorithmic implementation of multiclass kernelbased vector machines. Our starting point is a generalized notion of the margin to multiclass problems. Using this notion we cast multiclass categorization problems as a constrained optimization problem with a quadratic ob ..."
Abstract

Cited by 559 (13 self)
 Add to MetaCart
objective function. Unlike most of previous approaches which typically decompose a multiclass problem into multiple independent binary classification tasks, our notion of margin yields a direct method for training multiclass predictors. By using the dual of the optimization problem we are able
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 534 (11 self)
 Add to MetaCart
The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms
Knowledgebased Analysis of Microarray Gene Expression Data By Using Support Vector Machines
, 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract

Cited by 520 (8 self)
 Add to MetaCart
of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and selforganizing maps. SVMs have many mathematical features that make them attractive for gene expression
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondenc ..."
Abstract

Cited by 1226 (15 self)
 Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
in this field. The Duality Principle relating stochastic estimation and deterministic control problems plays an important role in the proof of theoretical results. In several examples, the estimation problem and its dual are discussed sidebyside. Properties of the variance equation are of great interest
The English Noun Phrase in its Sentential Aspect
 PH.D. DISSERTATION MIT
, 1987
"... This dissertation is a defense of the hypothesis that the noun phrase is headed by a functional element (i.e., "nonlexical" category) D, identified with the determiner. In this way, the structure of the noun phrase parallels that of the sentence, which is headed by Infl(ection), under ass ..."
Abstract

Cited by 532 (4 self)
 Add to MetaCart
phrases. The problem of capturing this dual aspect of the Possing construction is heightened by current restrictive views of Xbar theory, which, in particular, rule out the obvious structure for Possing, [ NP NP VP ing ], by virtue of its exocentricity. Consideration of languages in which nouns, even
A firstorder primaldual algorithm for convex problems with applications to imaging
, 2010
"... In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper ..."
Abstract

Cited by 436 (20 self)
 Add to MetaCart
In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering
ATOMIC DECOMPOSITION BY BASIS PURSUIT
, 1995
"... The TimeFrequency and TimeScale communities have recently developed a large number of overcomplete waveform dictionaries  stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for d ..."
Abstract

Cited by 2728 (61 self)
 Add to MetaCart
the smallest l 1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP and BOB, including better sparsity, and superresolution. BP has interesting relations to ideas in areas as diverse as illposed problems, in abstract harmonic analysis, total
Results 11  20
of
30,259