Results 1  10
of
4,537
An Introduction to the Kalman Filter
 UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
, 1995
"... In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area o ..."
Abstract

Cited by 1146 (13 self)
 Add to MetaCart
In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discretedata linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area
New results in linear filtering and prediction theory
 TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract

Cited by 607 (0 self)
 Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
 Stat. Appl. Genet. Mol. Biol.
, 2004
"... Abstract The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated twocolor experiment using a simple hierarchical parametric model. ..."
Abstract

Cited by 1321 (24 self)
 Add to MetaCart
Abstract The problem of identifying differentially expressed genes in designed microarray experiments is considered. Lonnstedt and Speed (2002) derived an expression for the posterior odds of differential expression in a replicated twocolor experiment using a simple hierarchical parametric model
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 654 (15 self)
 Add to MetaCart
In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 770 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have
Surface Reconstruction by Voronoi Filtering
 Discrete and Computational Geometry
, 1998
"... We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled ..."
Abstract

Cited by 405 (11 self)
 Add to MetaCart
We give a simple combinatorial algorithm that computes a piecewiselinear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled
Implementation issues in spectrum sensing for cognitive radios
 in Proc. the 38th. Asilomar Conference on Signals, Systems, and Computers
, 2004
"... Abstract There are new system implementation challenges involved in the design of cognitive radios, which have both the ability to sense the spectral environment and the flexibility to adapt transmission parameters to maximize system capacity while coexisting with legacy wireless networks. The cri ..."
Abstract

Cited by 440 (7 self)
 Add to MetaCart
. The critical design problem is the need to process multigigahertz wide bandwidth and reliably detect presence of primary users. This places severe requirements on sensitivity, linearity, and dynamic range of the circuitry in the RF frontend. To improve radio sensitivity of the sensing function through
An Improved Particle Filter for Nonlinear Problems
, 2004
"... The Kalman filter provides an effective solution to the linearGaussian filtering problem. However, where there is nonlinearity, either in the model specification or the observation process, other methods are required. We consider methods known generically as particle filters, which include the c ..."
Abstract

Cited by 268 (10 self)
 Add to MetaCart
The Kalman filter provides an effective solution to the linearGaussian filtering problem. However, where there is nonlinearity, either in the model specification or the observation process, other methods are required. We consider methods known generically as particle filters, which include
The curvelet transform for image denoising
 IEEE TRANS. IMAGE PROCESS
, 2002
"... We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A cen ..."
Abstract

Cited by 404 (40 self)
 Add to MetaCart
, and implements curvelet subbands using a filter bank of à trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here
Results 1  10
of
4,537