Results 1  10
of
614,599
Selection of natural scale in discrete wavelet domain using eigenvalues
 Xrh European Signal Processing Conference
, 2000
"... In this paper we present a novel technique for the selection of global natural scale from discrete wavelet transform. Here we define natural scale as the level associated with most prominent (dominant) eigenvalue. This technique is iterative and does not require full decomposition before finding the ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
In this paper we present a novel technique for the selection of global natural scale from discrete wavelet transform. Here we define natural scale as the level associated with most prominent (dominant) eigenvalue. This technique is iterative and does not require full decomposition before finding
Singularity Detection And Processing With Wavelets
 IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract

Cited by 590 (13 self)
 Add to MetaCart
of their wavelet transform are explained. We then prove that the local maxima of a wavelet transform detect the location of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations have a different behavior that we
Factoring wavelet transforms into lifting steps
 J. Fourier Anal. Appl
, 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract

Cited by 573 (8 self)
 Add to MetaCart
ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures
A Practical Guide to Wavelet Analysis
, 1998
"... A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finitelength t ..."
Abstract

Cited by 833 (3 self)
 Add to MetaCart
A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
Orthonormal bases of compactly supported wavelets
, 1993
"... Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 90 ..."
Abstract

Cited by 2182 (27 self)
 Add to MetaCart
Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp
Domain Theory
 Handbook of Logic in Computer Science
, 1994
"... Least fixpoints as meanings of recursive definitions. ..."
Abstract

Cited by 546 (25 self)
 Add to MetaCart
Least fixpoints as meanings of recursive definitions.
Mixed MNL Models for Discrete Response
 JOURNAL OF APPLIED ECONOMETRICS
, 2000
"... This paper considers mixed, or random coefficients, multinomial logit (MMNL) models for discrete response, and establishes the following results: Under mild regularity conditions, any discrete choice model derived from random utility maximization has choice probabilities that can be approximated as ..."
Abstract

Cited by 466 (14 self)
 Add to MetaCart
This paper considers mixed, or random coefficients, multinomial logit (MMNL) models for discrete response, and establishes the following results: Under mild regularity conditions, any discrete choice model derived from random utility maximization has choice probabilities that can be approximated
Results 1  10
of
614,599