Results 1  10
of
505,675
ScaleSpace for Discrete Signals
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1990
"... We address the formulation of a scalespace theory for discrete signals. In one dimension it is possible to characterize the smoothing transformations completely and an exhaustive treatment is given, answering the following two main questions: 1. Which linear transformations remove structure in the ..."
Abstract

Cited by 132 (25 self)
 Add to MetaCart
We address the formulation of a scalespace theory for discrete signals. In one dimension it is possible to characterize the smoothing transformations completely and an exhaustive treatment is given, answering the following two main questions: 1. Which linear transformations remove structure
An Uncertainty Principle for Discrete Signals
"... Abstract—By use of window functions, timefrequency analysis tools like Short Time Fourier Transform overcome a shortcoming of the Fourier Transform and enable us to study the timefrequency characteristics of signals which exhibit transient oscillatory behavior. Since the resulting representations ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
), the limit on the accuracy is wellestablished by the Heisenberg’s uncertainty principle when the timefrequency spread is measured in terms of the variance measures. However, for the finite discrete signals (where we consider the Discrete Fourier Transform), the uncertainty relation is not as well
On the Use of Windows for Harmonic Analysis With the Discrete Fourier Transform
 Proc. IEEE
, 1978
"... AhmwThis Pw!r mak = available a concise review of data win compromise consists of applying windows to the sampled daws pad the ^ affect On the Of in the data set, or equivalently, smoothing the spectral samples. '7 of aoise9 m the ptesence of sdroag bar The two operations to which we subject ..."
Abstract

Cited by 645 (0 self)
 Add to MetaCart
, windowing is less related to sampled windows for DFT's. HERE IS MUCH signal processing devoted to detection and estimation. Detection is the task of determiningif a specific signal set is present in an observation, while estimation is the task of obtaining the values of the parameters
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
Complete discrete 2D Gabor transforms by neural networks for image analysis and compression
, 1988
"... AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which provide ..."
Abstract

Cited by 475 (8 self)
 Add to MetaCart
AbstractA threelayered neural network is described for transforming twodimensional discrete signals into generalized nonorthogonal 2D “Gabor ” representations for image analysis, segmentation, and compression. These transforms are conjoint spatiahpectral representations [lo], [15], which
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing
A Signal Processing Approach To Fair Surface Design
, 1995
"... In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing, or fai ..."
Abstract

Cited by 668 (15 self)
 Add to MetaCart
In this paper we describe a new tool for interactive freeform fair surface design. By generalizing classical discrete Fourier analysis to twodimensional discrete surface signals  functions defined on polyhedral surfaces of arbitrary topology , we reduce the problem of surface smoothing
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 522 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Automatic Musical Genre Classification Of Audio Signals
 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING
, 2002
"... ... describe music. They are commonly used to structure the increasing amounts of music available in digital form on the Web and are important for music information retrieval. Genre categorization for audio has traditionally been performed manually. A particular musical genre is characterized by sta ..."
Abstract

Cited by 811 (32 self)
 Add to MetaCart
by statistical properties related to the instrumentation, rhythmic structure and form of its members. In this work, algorithms for the automatic genre categorization of audio signals are described. More specifically, we propose a set of features for representing texture and instrumentation. In addition a novel
Results 1  10
of
505,675