Results 1  10
of
593,656
Discrete Multiscale Vector Field Decomposition
, 2003
"... While 2D and 3D vector fields are ubiquitous in computational sciences, their use in graphics is often limited to regular grids, where computations are easily handled through finitedifference methods. In this paper, we propose a set of simple and accurate tools for the analysis of 3D discrete vecto ..."
Abstract

Cited by 94 (11 self)
 Add to MetaCart
vector fields on arbitrary tetrahedral grids. We introduce a variational, multiscale decomposition of vector fields into three intuitive components: a divergencefree part, a curlfree part, and a harmonic part. We show how our discrete approach matches its wellknown smooth analog, called the Helmotz
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 557 (36 self)
 Add to MetaCart
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
Light Field Rendering
, 1996
"... A number of techniques have been proposed for flying through scenes by redisplaying previously rendered or digitized views. Techniques have also been proposed for interpolating between views by warping input images, using depth information or correspondences between multiple images. In this paper, w ..."
Abstract

Cited by 1354 (22 self)
 Add to MetaCart
 the light field. This function completely characterizes the flow of light through unobstructed space in a static scene with fixed illumination. We describe a
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
The Vector Field Histogram  Fast Obstacle Avoidance For Mobile Robots
 IEEE JOURNAL OF ROBOTICS AND AUTOMATION
, 1991
"... A new realtime obstacle avoidance method for mobile robots has been developed and implemented. This method, named the vector field histogram(VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses a ..."
Abstract

Cited by 470 (23 self)
 Add to MetaCart
A new realtime obstacle avoidance method for mobile robots has been developed and implemented. This method, named the vector field histogram(VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses
A multilinear singular value decomposition
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc., are ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
Superconformal field theory on threebranes at a CalabiYau singularity
 Nucl. Phys. B
, 1998
"... Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that ..."
Abstract

Cited by 690 (37 self)
 Add to MetaCart
Just as parallel threebranes on a smooth manifold are related to string theory on AdS5 × S 5, parallel threebranes near a conical singularity are related to string theory on AdS5 × X5, for a suitable X5. For the example of the conifold singularity, for which X5 = (SU(2) × SU(2))/U(1), we argue that string theory on AdS5 × X5 can be described by a certain N = 1 supersymmetric gauge theory which we describe in detail.
Results 1  10
of
593,656