Results 1  10
of
34,259
Active Learning in Discrete Input Spaces
 In Proceedings of the 34th Interface Symposium
, 2002
"... Traditional design of experiments (DOE) from the statistics literature focuses on optimizing an output parameter over a space of continuous input parameters. Here we consider DOE, or active learning, for discrete input spaces. A trivial example of this is the karmed bandit problem, which is the ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Traditional design of experiments (DOE) from the statistics literature focuses on optimizing an output parameter over a space of continuous input parameters. Here we consider DOE, or active learning, for discrete input spaces. A trivial example of this is the karmed bandit problem, which
Diffusion kernels on graphs and other discrete input spaces
 in: Proceedings of the 19th International Conference on Machine Learning
, 2002
"... The application of kernelbased learning algorithms has, so far, largely been confined to realvalued data and a few special data types, such as strings. In this paper we propose a general method of constructing natural families of kernels over discrete structures, based on the matrix exponentiation ..."
Abstract

Cited by 223 (5 self)
 Add to MetaCart
idea. In particular, we focus on generating kernels on graphs, for which we propose a special class of exponential kernels called diffusion kernels, which are based on the heat equation and can be regarded as the discretization of the familiar Gaussian kernel of Euclidean space.
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 506 (0 self)
 Add to MetaCart
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes
Supervised and unsupervised discretization of continuous features
 in A. Prieditis & S. Russell, eds, Machine Learning: Proceedings of the Twelfth International Conference
, 1995
"... Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de ning characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised dis ..."
Abstract

Cited by 540 (11 self)
 Add to MetaCart
Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de ning characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised
Mean shift: A robust approach toward feature space analysis
 In PAMI
, 2002
"... A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence ..."
Abstract

Cited by 2395 (37 self)
 Add to MetaCart
A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical
A theory of shape by space carving
 In Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV99), volume I, pages 307– 314, Los Alamitos, CA
, 1999
"... In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarilyshaped scene from multiple photographs taken at known but arbitrarilydistributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence of a ..."
Abstract

Cited by 566 (14 self)
 Add to MetaCart
In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarilyshaped scene from multiple photographs taken at known but arbitrarilydistributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 506 (2 self)
 Add to MetaCart
Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 852 (10 self)
 Add to MetaCart
The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately
Results 1  10
of
34,259