• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 80,108
Next 10 →

Detection and Tracking of Point Features

by Carlo Tomasi, Takeo Kanade - International Journal of Computer Vision , 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small inter-frame displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract - Cited by 629 (2 self) - Add to MetaCart
in 1981. The method defines the measure of match between fixed-size feature windows in the past and current frame as the sum of squared intensity differences over the windows. The displacement is then defined as the one that minimizes this sum. For small motions, a linearization of the image intensities

Inducing Features of Random Fields

by Stephen Della Pietra, Vincent Della Pietra, John Lafferty - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract - Cited by 670 (10 self) - Add to MetaCart
We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing

Feature detection with automatic scale selection

by Tony Lindeberg - International Journal of Computer Vision , 1998
"... The fact that objects in the world appear in different ways depending on the scale of observation has important implications if one aims at describing them. It shows that the notion of scale is of utmost importance when processing unknown measurement data by automatic methods. In their seminal works ..."
Abstract - Cited by 723 (34 self) - Add to MetaCart
The fact that objects in the world appear in different ways depending on the scale of observation has important implications if one aims at describing them. It shows that the notion of scale is of utmost importance when processing unknown measurement data by automatic methods. In their seminal

Face recognition: features versus templates

by Roberto Brunelli, Tomaso Poggio - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1993
"... Over the last 20 years, several different techniques have been proposed for computer recognition of human faces. The purpose of this paper is to compare two simple but general strategies on a common database (frontal images of faces of 47 people: 26 males and 21 females, four images per person). We ..."
Abstract - Cited by 749 (25 self) - Add to MetaCart
Over the last 20 years, several different techniques have been proposed for computer recognition of human faces. The purpose of this paper is to compare two simple but general strategies on a common database (frontal images of faces of 47 people: 26 males and 21 females, four images per person

Selection of relevant features and examples in machine learning

by Avrim L. Blum, Pat Langley - ARTIFICIAL INTELLIGENCE , 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract - Cited by 606 (2 self) - Add to MetaCart
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been

Distinctive Image Features from Scale-Invariant Keypoints

by David G. Lowe , 2003
"... This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substa ..."
Abstract - Cited by 8955 (21 self) - Add to MetaCart
This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a

Example-based learning for view-based human face detection

by Kah-kay Sung, Tomaso Poggio - IEEE Transactions on Pattern Analysis and Machine Intelligence , 1998
"... Abstract—We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based “face ” and “nonface ” model clusters. At each image location, a difference feature v ..."
Abstract - Cited by 690 (24 self) - Add to MetaCart
Abstract—We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based “face ” and “nonface ” model clusters. At each image location, a difference feature

Local features and kernels for classification of texture and object categories: a comprehensive study

by J. Zhang, S. Lazebnik, C. Schmid - International Journal of Computer Vision , 2007
"... Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations an ..."
Abstract - Cited by 653 (34 self) - Add to MetaCart
Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a large-scale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations

Text Categorization with Support Vector Machines: Learning with Many Relevant Features

by Thorsten Joachims , 1998
"... This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substan ..."
Abstract - Cited by 2303 (9 self) - Add to MetaCart
substantial improvements over the currently best performing methods and they behave robustly over a variety of different learning tasks. Furthermore, they are fully automatic, eliminating the need for manual parameter tuning.

Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes

by P. L. Roe - J. COMP. PHYS , 1981
"... Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution ..."
Abstract - Cited by 1010 (2 self) - Add to MetaCart
Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution
Next 10 →
Results 1 - 10 of 80,108
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University