Results 1  10
of
1,079,773
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 982 (11 self)
 Add to MetaCart
polynomials feZ[X] into irreducible factors in Z[X]. Here we call f ~ Z[X] primitive if the greatest common divisor of its coefficients (the content of f) is 1. Our algorithm performs well in practice, cf. [8]. Its running time, measured in bit operations, is O(nl2+n9(log[fD3). Here f~Tl[X] is the polynomial
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
law), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball
Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants
 Review of Economic Studies
, 2002
"... This paper empirically investigates the effects of liberalized trade on plant productivity in the case of Chile. Chile presents an interesting setting to study this relationship since it underwent a massive trade liberalization that significantly exposed its plants to competition from abroad during ..."
Abstract

Cited by 530 (14 self)
 Add to MetaCart
in the estimates of the input coefficients required to construct a productivity measure. I explicitly incorporate plant exit in the estimation to correct for the selection problem induced by liquidated plants. These methodological aspects are important in obtaining a reliable plantlevel productivity measure based
Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled Time Series Tests, With an Application to the PPP Hypothesis; New Results. Working paper
, 1997
"... We examine properties of residualbased tests for the null of no cointegration for dynamic panels in which both the shortrun dynamics and the longrun slope coefficients are permitted to be heterogeneous across individual members of the panel+ The tests also allow for individual heterogeneous fixed ..."
Abstract

Cited by 499 (13 self)
 Add to MetaCart
We examine properties of residualbased tests for the null of no cointegration for dynamic panels in which both the shortrun dynamics and the longrun slope coefficients are permitted to be heterogeneous across individual members of the panel+ The tests also allow for individual heterogeneous
Lag length selection and the construction of unit root tests with good size and power
 Econometrica
, 2001
"... It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We conside ..."
Abstract

Cited by 534 (14 self)
 Add to MetaCart
It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
on such a manifold and Taylor coefficients of periods of Hodge structures considered as functions on the moduli space of complex structures on a mirror manifold. Recently it has been realized that one can make predictions for numbers of curves of positive genera and also on CalabiYau manifolds of arbitrary
The particel swarm: Explosion, stability, and convergence in a multidimensional complex space
 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract

Cited by 822 (10 self)
 Add to MetaCart
in discrete time (the algebraic view), then progresses to the view of it in continuous time (the analytical view). A 5dimensional depiction is developed, which completely describes the system. These analyses lead to a generalized model of the algorithm, containing a set of coefficients to control the system
Least angle regression
 Ann. Statist
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1308 (43 self)
 Add to MetaCart
to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm
Texture Synthesis by Nonparametric Sampling
 In International Conference on Computer Vision
, 1999
"... A nonparametric method for texture synthesis is proposed. The texture synthesis process grows a new image outward from an initial seed, one pixel at a time. A Markov random field model is assumed, and the conditional distribution of a pixel given all its neighbors synthesized so far is estimated by ..."
Abstract

Cited by 1014 (7 self)
 Add to MetaCart
by querying the sample image and finding all similar neighborhoods. The degree of randomness is controlled by a single perceptually intuitive parameter. The method aims at preserving as much local structure as possible and produces good results for a wide variety of synthetic and realworld textures. 1
Results 1  10
of
1,079,773