• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 3,994
Next 10 →

Unsupervised Learning by Probabilistic Latent Semantic Analysis

by Thomas Hofmann - Machine Learning , 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co-occurren ..."
Abstract - Cited by 618 (4 self) - Add to MetaCart
Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co

Object class recognition by unsupervised scale-invariant learning

by R. Fergus, P. Perona, A. Zisserman - In CVPR , 2003
"... We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and ..."
Abstract - Cited by 1127 (50 self) - Add to MetaCart
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion

Unsupervised word sense disambiguation rivaling supervised methods

by David Yarowsky - IN PROCEEDINGS OF THE 33RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS , 1995
"... This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have ..."
Abstract - Cited by 638 (4 self) - Add to MetaCart
This paper presents an unsupervised learning algorithm for sense disambiguation that, when trained on unannotated English text, rivals the performance of supervised techniques that require time-consuming hand annotations. The algorithm is based on two powerful constraints -- that words tend to have

Supervised and unsupervised discretization of continuous features

by James Dougherty, Ron Kohavi, Mehran Sahami - in A. Prieditis & S. Russell, eds, Machine Learning: Proceedings of the Twelfth International Conference , 1995
"... Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de n-ing characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised dis ..."
Abstract - Cited by 540 (11 self) - Add to MetaCart
Many supervised machine learning algorithms require a discrete feature space. In this paper, we review previous work on continuous feature discretization, identify de n-ing characteristics of the methods, and conduct an empirical evaluation of several methods. We compare binning, an unsupervised

Unsupervised Models for Named Entity Classification

by Michael Collins, Yoram Singer - In Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora , 1999
"... This paper discusses the use of unlabeled examples for the problem of named entity classification. A large number of rules is needed for coverage of the domain, suggesting that a fairly large number of labeled examples should be required to train a classifier. However, we show that the use of unlabe ..."
Abstract - Cited by 542 (4 self) - Add to MetaCart
algorithms. The first method uses a similar algorithm to that of (Yarowsky 95), with modifications motivated by (Blum and Mitchell 98). The second algorithm extends ideas from boosting algorithms, designed for supervised learning tasks, to the framework suggested by (Blum and Mitchell 98). 1

Unsupervised learning of finite mixture models

by Mario A. T. Figueiredo, Anil K. Jain - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2002
"... This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM) alg ..."
Abstract - Cited by 418 (22 self) - Add to MetaCart
This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM

Unsupervised learning of models for recognition

by M. Weber, M. Welling, P. Perona - In ECCV , 2000
"... Abstract. We present a method to learn object class models from unlabeled and unsegmented cluttered scenes for the purpose of visual object recognition. We focus on a particular type of model where objects are represented as flexible constellations of rigid parts (features). The variability within a ..."
Abstract - Cited by 356 (30 self) - Add to MetaCart
Abstract. We present a method to learn object class models from unlabeled and unsegmented cluttered scenes for the purpose of visual object recognition. We focus on a particular type of model where objects are represented as flexible constellations of rigid parts (features). The variability within

A bayesian hierarchical model for learning natural scene categories

by Li Fei-fei - In CVPR , 2005
"... We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region ..."
Abstract - Cited by 948 (15 self) - Add to MetaCart
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work [9, 17], it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each

Manifold regularization: A geometric framework for learning from labeled and unlabeled examples

by Mikhail Belkin, Partha Niyogi, Vikas Sindhwani - JOURNAL OF MACHINE LEARNING RESEARCH , 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning al ..."
Abstract - Cited by 578 (16 self) - Add to MetaCart
have a brief discussion of unsupervised and fully supervised learning within our general framework.

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations

by Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng - IN ICML’09 , 2009
"... ..."
Abstract - Cited by 369 (19 self) - Add to MetaCart
Abstract not found
Next 10 →
Results 1 - 10 of 3,994
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University