Results 1  10
of
62,329
Data Encoding Schemes in Networks on Chip
 IEEE Transactions On ComputerAided Design Of Integrated Circuits And Systems
"... Abstract—An ever more significant fraction of the overall power dissipation of a networkonchip (NoC) based systemonchip (SoC) is due to the interconnection system. In fact, as technology shrinks, the power contribute of NoC links starts to compete with that of NoC routers. In this paper, we prop ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
propose the use of data encoding techniques as a viable way to reduce both power dissipation and energy consumption of NoC links. The proposed encoding scheme exploits the wormhole switching techniques and works on an endtoend basis. That is, flits are encoded by the network interface (NI) before
Localitysensitive hashing scheme based on pstable distributions
 In SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry
, 2004
"... inÇÐÓ�Ò We present a novel LocalitySensitive Hashing scheme for the Approximate Nearest Neighbor Problem underÐÔnorm, based onÔstable distributions. Our scheme improves the running time of the earlier algorithm for the case of theÐnorm. It also yields the first known provably efficient approximate ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
NN algorithm for the caseÔ�. We also show that the algorithm finds the exact near neigbhor time for data satisfying certain “bounded growth ” condition. Unlike earlier schemes, our LSH scheme works directly on points in the Euclidean space without embeddings. Consequently, the resulting query time
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 1158 (35 self)
 Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly
Spacetime codes for high data rate wireless communication: Performance criterion and code construction
 IEEE TRANS. INFORM. THEORY
, 1998
"... We consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas. Data is encoded by a channel code and the encoded data is split into n streams that are simultaneously transmitted using n transmit ant ..."
Abstract

Cited by 1782 (28 self)
 Add to MetaCart
We consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas. Data is encoded by a channel code and the encoded data is split into n streams that are simultaneously transmitted using n transmit
Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging
 MAGNETIC RESONANCE IN MEDICINE 58:1182–1195
, 2007
"... The sparsity which is implicit in MR images is exploited to significantly undersample kspace. Some MR images such as angiograms are already sparse in the pixel representation; other, more complicated images have a sparse representation in some transform domain–for example, in terms of spatial finit ..."
Abstract

Cited by 538 (11 self)
 Add to MetaCart
undersampling schemes are developed and analyzed by means of their aliasing interference. Incoherence is introduced by pseudorandom variabledensity undersampling of phaseencodes. The reconstruction is performed by minimizing the ℓ1 norm of a transformed image, subject to data fidelity constraints. Examples
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 752 (14 self)
 Add to MetaCart
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
A volumetric method for building complex models from range images,”
 in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM,
, 1996
"... Abstract A number of techniques have been developed for reconstructing surfaces by integrating groups of aligned range images. A desirable set of properties for such algorithms includes: incremental updating, representation of directional uncertainty, the ability to fill gaps in the reconstruction, ..."
Abstract

Cited by 1020 (17 self)
 Add to MetaCart
with one range image at a time, we first scanconvert it to a distance function, then combine this with the data already acquired using a simple additive scheme. To achieve space efficiency, we employ a runlength encoding of the volume. To achieve time efficiency, we resample the range image to align
Fully homomorphic encryption using ideal lattices
 In Proc. STOC
, 2009
"... We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation of arbitra ..."
Abstract

Cited by 663 (17 self)
 Add to MetaCart
We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
The Laplacian Pyramid as a Compact Image Code
, 1983
"... We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixeltopixel correlations a ..."
Abstract

Cited by 1388 (12 self)
 Add to MetaCart
is achieved by quantizing the difference image. These steps are then repeated to compress the lowpass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus
Results 1  10
of
62,329