Results 1  10
of
4,690
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 506 (2 self)
 Add to MetaCart
Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k
The use of the area under the ROC curve in the evaluation of machine learning algorithms
 PATTERN RECOGNITION
, 1997
"... In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multilayer Perceptron, kNe ..."
Abstract

Cited by 685 (3 self)
 Add to MetaCart
In this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multilayer Perceptron, k
SMOTE: Synthetic Minority Oversampling Technique
 Journal of Artificial Intelligence Research
, 2002
"... An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often realworld data sets are predominately composed of ``normal'' examples with only a small percentag ..."
Abstract

Cited by 634 (27 self)
 Add to MetaCart
percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Undersampling of the majority (normal) class has been proposed as a
Principal Curves
, 1989
"... Principal curves are smooth onedimensional curves that pass through the middle of a pdimensional data set, providing a nonlinear summary of the data. They are nonparametric, and their shape is suggested by the data. The algorithm for constructing principal curve starts with some prior summary, suc ..."
Abstract

Cited by 394 (1 self)
 Add to MetaCart
Principal curves are smooth onedimensional curves that pass through the middle of a pdimensional data set, providing a nonlinear summary of the data. They are nonparametric, and their shape is suggested by the data. The algorithm for constructing principal curve starts with some prior summary
New tight frames of curvelets and optimal representations of objects with piecewise C² singularities
 COMM. ON PURE AND APPL. MATH
, 2002
"... This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshap ..."
Abstract

Cited by 428 (21 self)
 Add to MetaCart
for discontinuities along C 2 curves and is essentially optimal. In comparison, the squared error of nterm wavelet approximations only converges as n −1 as n → ∞, which is considerably worst than the optimal behavior.
The det curve in assessment of detection task performance,”
 in Proceedings of the EUROSPEECH,
, 1997
"... ABSTRACT We introduce the DET Curve as a means of representing performance on detection tasks that involve a tradeoff of error types. We discuss why we prefer it to the traditional ROC Curve and offer several examples of its use in speaker recognition and language recognition. We explain why it is ..."
Abstract

Cited by 364 (5 self)
 Add to MetaCart
ABSTRACT We introduce the DET Curve as a means of representing performance on detection tasks that involve a tradeoff of error types. We discuss why we prefer it to the traditional ROC Curve and offer several examples of its use in speaker recognition and language recognition. We explain why
Improved Decoding of ReedSolomon and AlgebraicGeometry Codes
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1999
"... Given an errorcorrecting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding ReedSolomon codes ..."
Abstract

Cited by 345 (44 self)
 Add to MetaCart
Given an errorcorrecting code over strings of length n and an arbitrary input string also of length n, the list decoding problem is that of finding all codewords within a specified Hamming distance from the input string. We present an improved list decoding algorithm for decoding Reed
Quantifying the Benefits of New Products: The Case of the Minivan
, 2002
"... This paper proposes a technique for obtaining more precise estimates of demand and supply curves when one is constrained to marketlevel data. The technique allows one to augment market share data with information relating consumer demographics to the characteristics of the products they purchase. T ..."
Abstract

Cited by 306 (14 self)
 Add to MetaCart
This paper proposes a technique for obtaining more precise estimates of demand and supply curves when one is constrained to marketlevel data. The technique allows one to augment market share data with information relating consumer demographics to the characteristics of the products they purchase
Wavelet shrinkage: asymptopia
 Journal of the Royal Statistical Society, Ser. B
, 1995
"... Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators bein ..."
Abstract

Cited by 295 (36 self)
 Add to MetaCart
Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators
3D Curves Reconstruction from Multiple Images
"... Abstract—In this paper, we propose a new approach for reconstructing 3D curves from a sequence of 2D images taken by uncalibrated cameras. A curve in 3D space is represented by a sequence of 3D points sampled along the curve, and the 3D points are reconstructed by minimizing the distances from their ..."
Abstract
 Add to MetaCart
their projections to the measured 2D curves on different images (i.e., 2D curve reprojection error). The minimization problem is solved by an iterative algorithm which is guaranteed to converge to a (local) minimum of the 2D reprojection error. Without requiring calibrated cameras or additional point features, our
Results 1  10
of
4,690