Results 1  10
of
4,397,661
CLUSTERING BASED ON COSINE SIMILARITY MEASURE
"... All clustering methods have to assume some cluster relationship among the data objects that they are applied on. Hierarchical clustering builds(agglomerative),or breaks up(divisive), a hierarchy of clusters. The traditional representation of this hierarchy is a tree. In this paper, we introduce to d ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
” by a human operator or detected by a clustering algorithm. In other words, there may be a significant difference between intuitively defined clusters and the true clusters corresponding to the components in the mixture. Index Terms: Hierarchical Document clustering, text mining, similarity measure.
Cosine Similarity Measure According to a Convex Cost Function
"... In this paper, we describe a new vector similarity measure associated with a convex cost function. Given two vectors, we determine the surface normals of the convex function at the vectors. The angle between the two surface normals is the similarity measure. Convex cost function can be the negativ ..."
Abstract
 Add to MetaCart
In this paper, we describe a new vector similarity measure associated with a convex cost function. Given two vectors, we determine the surface normals of the convex function at the vectors. The angle between the two surface normals is the similarity measure. Convex cost function can
Measure of Neutrosophic Numbers Misfire Fault Diagnosis Method of Gasoline Engines Using the Cosine Similarity Measure of Neutrosophic Numbers
"... Abstract. This paper proposes a distance measure of neutrosophic numbers and a similarity measure based on cosine function, and then develops the misfire fault diagnosis method of gasoline engines by using the cosine similarity measure of neutrosophic numbers. In the fault diagnosis, by the cosine s ..."
Abstract
 Add to MetaCart
Abstract. This paper proposes a distance measure of neutrosophic numbers and a similarity measure based on cosine function, and then develops the misfire fault diagnosis method of gasoline engines by using the cosine similarity measure of neutrosophic numbers. In the fault diagnosis, by the cosine
Similarity estimation techniques from rounding algorithms
 In Proc. of 34th STOC
, 2002
"... A locality sensitive hashing scheme is a distribution on a family F of hash functions operating on a collection of objects, such that for two objects x, y, Prh∈F[h(x) = h(y)] = sim(x,y), where sim(x,y) ∈ [0, 1] is some similarity function defined on the collection of objects. Such a scheme leads ..."
Abstract

Cited by 436 (6 self)
 Add to MetaCart
. Based on this insight, we construct new locality sensitive hashing schemes for: 1. A collection of vectors with the distance between ⃗u and ⃗v measured by θ(⃗u,⃗v)/π, where θ(⃗u,⃗v) is the angle between ⃗u and ⃗v. This yields a sketching scheme for estimating the cosine similarity measure between two
Efficient similarity search in sequence databases
, 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract

Cited by 505 (21 self)
 Add to MetaCart
We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong
An InformationTheoretic Definition of Similarity
 In Proceedings of the 15th International Conference on Machine Learning
, 1998
"... Similarity is an important and widely used concept. Previous definitions of similarity are tied to a particular application or a form of knowledge representation. We present an informationtheoretic definition of similarity that is applicable as long as there is a probabilistic model. We demonstrate ..."
Abstract

Cited by 1211 (0 self)
 Add to MetaCart
how our definition can be used to measure the similarity in a number of different domains.
Automatic Retrieval and Clustering of Similar Words
, 1998
"... greatest challenges in natural language learning. We first define a word similarity measure based on the distributional pattern of words. The similarity measure allows us to construct a thesaurus using a parsed corpus. We then present a new evaluation methodology for the automatically constructed th ..."
Abstract

Cited by 925 (15 self)
 Add to MetaCart
greatest challenges in natural language learning. We first define a word similarity measure based on the distributional pattern of words. The similarity measure allows us to construct a thesaurus using a parsed corpus. We then present a new evaluation methodology for the automatically constructed
Analysis, Modeling and Generation of SelfSimilar VBR Video Traffic
, 1994
"... We present a detailed statistical analysis of a 2hour long empirical sample of VBR video. The sample was obtained by applying a simple intraframe video compression code to an action movie. The main findings of our analysis are (1) the tail behavior of the marginal bandwidth distribution can be accu ..."
Abstract

Cited by 546 (6 self)
 Add to MetaCart
be accurately described using "heavytailed" distributions (e.g., Pareto); (2) the autocorrelation of the VBR video sequence decays hyperbolically (equivalent to longrange dependence) and can be modeled using selfsimilar processes. We combine our findings in a new (nonMarkovian) source model
Similarity of Color Images
, 1995
"... We describe two new color indexing techniques. The first one is a more robust version of the commonly used color histogram indexing. In the index we store the cumulative color histograms. The L 1 , L 2 , or L1 distance between two cumulative color histograms can be used to define a similarity mea ..."
Abstract

Cited by 491 (2 self)
 Add to MetaCart
We describe two new color indexing techniques. The first one is a more robust version of the commonly used color histogram indexing. In the index we store the cumulative color histograms. The L 1 , L 2 , or L1 distance between two cumulative color histograms can be used to define a similarity
Attention, similarity, and the identificationCategorization Relationship
, 1986
"... A unified quantitative approach to modeling subjects ' identification and categorization of multidimensional perceptual stimuli is proposed and tested. Two subjects identified and categorized the same set of perceptually confusable stimuli varying on separable dimensions. The identification dat ..."
Abstract

Cited by 663 (28 self)
 Add to MetaCart
), assumes that subjects store category exemplars in memory. Classification decisions are based on the similarity of stimuli to the stored exemplars. It is assumed that the same multidimensional perceptual representation underlies performance in both the identification and Categorization paradigms. However
Results 1  10
of
4,397,661