Results 1  10
of
1,995,548
Randomized Gossip Algorithms
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract

Cited by 532 (5 self)
 Add to MetaCart
distribute the computational burden and in which a node communicates with a randomly chosen neighbor. We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly
Random Early Detection Gateways for Congestion Avoidance.
 IEEELACM Transactions on Networking,
, 1993
"... AbstractThis paper presents Random Early Detection (RED) gateways for congestion avoidance in packetswitched networks. The gateway detects incipient congestion by computing the average queue size. The gateway could notify connections of congestion either by dropping packets arriving at the gatewa ..."
Abstract

Cited by 2713 (31 self)
 Add to MetaCart
AbstractThis paper presents Random Early Detection (RED) gateways for congestion avoidance in packetswitched networks. The gateway detects incipient congestion by computing the average queue size. The gateway could notify connections of congestion either by dropping packets arriving
Clustering by passing messages between data points
 Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract

Cited by 699 (8 self)
 Add to MetaCart
Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only
High confidence visual recognition of persons by a test of statistical independence
 IEEE TRANS. ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1993
"... A method for rapid visual recognition of personal identity is described, based on the failure of a statistical test of independence. The most unique phenotypic feature visible in a person’s face is the detailed texture of each eye’s iris: An estimate of its statistical complexity in a sample of the ..."
Abstract

Cited by 620 (8 self)
 Add to MetaCart
of the human population reveals variation corresponding to several hundred independent degreesoffreedom. Morphogenetic randomness in the texture expressed phenotypically in the iris trabecular meshwork ensures that a test of statistical independence on two coded patterns originating from different eyes
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 574 (9 self)
 Add to MetaCart
In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly
Methodologies in spectral analysis of large dimensional random matrices, a review
 STATIST. SINICA
, 1999
"... In this paper, we give a brief review of the theory of spectral analysis of large dimensional random matrices. Most of the existing work in the literature has been stated for real matrices but the corresponding results for the complex case are also of interest, especially for researchers in Electri ..."
Abstract

Cited by 454 (39 self)
 Add to MetaCart
In this paper, we give a brief review of the theory of spectral analysis of large dimensional random matrices. Most of the existing work in the literature has been stated for real matrices but the corresponding results for the complex case are also of interest, especially for researchers
Biased assimilation and attitude polarization: The effects of prior theories on subsequently considered evidence
 Journal of Personality and Social Psychology
, 1979
"... People who hold strong opinions on complex social issues are likely to examine relevant empirical evidence in a biased manner. They are apt to accept "confirming" evidence at face value while subjecting "discontinuing " evidence to critical evaluation, and as a result to draw und ..."
Abstract

Cited by 476 (8 self)
 Add to MetaCart
undue support for their initial positions from mixed or random empirical findings. Thus, the result of exposing contending factions in a social dispute to an identical body of relevant empirical evidence may be not a narrowing of disagreement but rather an increase in polarization. To test
Term Premia and Interest Rate Forecasts in Affine Models
, 2001
"... I find that the standard class of a#ne models produces poor forecasts of future changes in Treasury yields. Better forecasts are generated by assuming that yields follow random walks. The failure of these models is driven by one of their key features: The compensation that investors receive for faci ..."
Abstract

Cited by 453 (13 self)
 Add to MetaCart
I find that the standard class of a#ne models produces poor forecasts of future changes in Treasury yields. Better forecasts are generated by assuming that yields follow random walks. The failure of these models is driven by one of their key features: The compensation that investors receive
Random walks for image segmentation
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2006
"... A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with userdefined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each unlabeled pixel will first reach one of the ..."
Abstract

Cited by 388 (21 self)
 Add to MetaCart
A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with userdefined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each unlabeled pixel will first reach one
A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficients
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 2000
"... We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We de ..."
Abstract

Cited by 421 (13 self)
 Add to MetaCart
We present a universal statistical model for texture images in the context of an overcomplete complex wavelet transform. The model is parameterized by a set of statistics computed on pairs of coefficients corresponding to basis functions at adjacent spatial locations, orientations, and scales. We
Results 1  10
of
1,995,548