Results 1 - 10
of
403,684
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract
-
Cited by 510 (0 self)
- Add to MetaCart
the family of radial basis kernels. It can also be used to define kernels in the form of joint Gibbs probability distributions. Kernels can be built from hidden Markov random elds, generalized regular expressions, pair-HMMs, or ANOVA decompositions. Uses of the method lead to open problems involving
ATOMIC DECOMPOSITION BY BASIS PURSUIT
, 1995
"... The Time-Frequency and Time-Scale communities have recently developed a large number of overcomplete waveform dictionaries -- stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for d ..."
Abstract
-
Cited by 2731 (61 self)
- Add to MetaCart
for decomposition have been proposed, including the Method of Frames (MOF), Matching Pursuit (MP), and, for special dictionaries, the Best Orthogonal Basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having
A theory for multiresolution signal decomposition : the wavelet representation
- IEEE Transaction on Pattern Analysis and Machine Intelligence
, 1989
"... Abstract-Multiresolution representations are very effective for analyzing the information content of images. We study the properties of the operator which approximates a signal at a given resolution. We show that the difference of information between the approximation of a signal at the resolutions ..."
Abstract
-
Cited by 3460 (12 self)
- Add to MetaCart
2 ’ + ’ and 2jcan be extracted by decomposing this signal on a wavelet orthonormal basis of L*(R”). In LL(R), a wavelet orthonormal basis is a family of functions ( @ w (2’ ~-n)),,,“jEZt, which is built by dilating and translating a unique function t+r (xl. This decomposition defines an orthogonal
A formal basis for architectural connection
- ACM TRANSACTIONS ON SOJIWARE ENGINEERING AND METHODOLOGY
, 1997
"... ..."
A multilinear singular value decomposition
- SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higher-order tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc., are ..."
Abstract
-
Cited by 467 (20 self)
- Add to MetaCart
Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higher-order tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc
Image registration methods: a survey
- IMAGE AND VISION COMPUTING
, 2003
"... This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align t ..."
Abstract
-
Cited by 734 (9 self)
- Add to MetaCart
This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align
Ontologies: Principles, methods and applications
- KNOWLEDGE ENGINEERING REVIEW
, 1996
"... This paper is intended to serve as a comprehensive introduction to the emerging field concerned with the design and use of ontologies. We observe that disparate backgrounds, languages, tools, and techniques are a major barrier to effective communication among people, organisations, and/or software s ..."
Abstract
-
Cited by 570 (3 self)
- Add to MetaCart
This paper is intended to serve as a comprehensive introduction to the emerging field concerned with the design and use of ontologies. We observe that disparate backgrounds, languages, tools, and techniques are a major barrier to effective communication among people, organisations, and/or software systems. We show how the development and implementation of an explicit account of a shared understanding (i.e. an `ontology') in a given subject area, can improve such communication, which in turn, can give rise to greater reuse and sharing, inter-operability, and more reliable software. After motivating their need, we clarify just what ontologies are and what purposes they serve. We outline a methodology for developing and evaluating ontologies, first discussing informal techniques, concerning such issues as scoping, handling ambiguity, reaching agreement and producing de nitions. We then consider the bene ts of and describe, a more formal approach. We re-visit the scoping phase, and discuss the role of formal languages and techniques in the specification, implementation and evaluation of ontologies. Finally, we review the state of the art and practice in this emerging field,
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
- STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is develop ..."
Abstract
-
Cited by 1032 (76 self)
- Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework
Large margin methods for structured and interdependent output variables
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract
-
Cited by 612 (12 self)
- Add to MetaCart
that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains
Results 1 - 10
of
403,684